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Abstract
Several ribosomal proteins including L11 have been shown to activate p53 by inhibiting oncoprotein
MDM2, leading to inhibition of cell cycle progression. Our recent study showed that L11 also inhibits
oncoprotein c-Myc. Overexpression of L11 inhibits c-Myc-induced transcription and cell
proliferation, while reduction of endogenous L11 increases these c-Myc activities. Interestingly, L11
is a transcriptional target of c-Myc, thus forming a negative feedback loop. We further showed that
L11 competes with co-activator TRRAP for binding to c-Myc through the Myc box II (MB II) and
reduces histone H4 acetylation at c-Myc target gene promoters. In addition, L11 appears to regulate
c-Myc levels. Knocking down L11 markedly increases the mRNA and protein levels of endogenous
c-Myc. These results suggest that L11 also inhibits cell cycle progression by regulating the c-Myc
pathway. Here we further discuss the implications of this regulation and questions that this finding
raises.
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INTRODUCTION
Ribosomal biogenesis, a complex process for making the ribosome, is of fundamental
importance for normal cell growth and proliferation. Interfering with the production of
ribosomes severely retards cell growth and animal development. For example, deletion of
ribosomal protein L16 in yeast results in a lethal phenotype due to deficiency of the 60 S subunit
of the ribosome.1 A class of dominant mutants called minutes in drosophila harbor mutations
in genes encoding ribosomal proteins. These minutes display similar phenotypes that are
characterized by delayed larval development, short thin bristles, recessive lethality, as well as
some variable phenotypes including small body size, female sterility, and malformation of
wings and eyes resulting from reduced number of ribosomes and protein synthesis.2,3 In
mammals, naturally occurring mutations are found in genes encoding ribosomal proteins S19
and L24. Specifically, heterozygous null mutations in the human S19 gene are present in about
25% of patients with Diamond-Blackfan anemia (DBA), a syndrome characterized by anemia
and an increased susceptibility to hematopoietic malignancies.4 Additionally, a spontaneously
occurring semindominant and homozygous lethal mutant called Belly spot and tail (Bst) in
mice was found to harbor a short deletion mutation of the L24 gene.5 Complete loss of S19 or
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L24 is embryonically lethal, reinforcing the profound effect of ribosomal biogenesis on cell
growth and development.5,6

In addition, genetically manipulated inactivation of individual ribosomal proteins L22, L29,
and S6 has recently been reported in mice. Conditional homozygous deletion of the S6 gene
in mouse liver resulted in the failure of liver cell proliferation following partial hepatectomy.
7 Heterozygous deletion of S6 led to p53-dependent cell cycle arrest in somatic T
lymphocytes8 and in embryos during gastrulation.9 These studies suggest that S6-
haploinsufficiency triggers the activation of a p53-dependent cell cycle checkpoint.10 In
contrast, L29 null mice are viable but display low birth weight, reduced postnatal viability, and
a global skeleton growth defect. L29 null MEFs display decreased cell proliferation and protein
synthesis.11 L22 null mice are also viable and develop normally, but harbor a selective defect
in the development of αβT lymphocytes due to activation of a p53-dependent checkpoint,12
suggesting that certain ribosomal proteins may perform cell-type specific or stage-specific
functions. Altogether, genetic studies firmly support that ribosomal biogenesis is essential for
cell growth and proliferation as well as animal development.

On the other hand, aberrant over-production of ribosomes and increased translational activity
contribute to cell transformation and tumorigenesis.13 For example, overexpression of the
ribosomal protein S3a induces transformation of NIH 3T3 cells and tumor formation in nude
mice by inhibiting apoptosis.14 Individual overexpression of human translation initiation
factor eIF3 subunits and eIF-4E enhances cell proliferation and induces cellular transformation.
15–17 Other individual ribosomal proteins, such as S8, L12, L23a, L27 and L30, were up-
regulated in various tumors.18,19 Although it is still not clear how the overexpression of
individual ribosomal proteins contributes to tumorigenesis and whether increased translation
on its own can contribute to tumorigenesis, the above studies point to a clear role for
deregulation of ribosomal biogenesis in tumorigeneis. Thus, ribosomal biogenesis must be
under tight control in order to constantly coordinate with cell growth and proliferation.

REGULATION OF RIBOSOMAL BIOGENESIS BY TUMOR SUPPRESSORS
AND ONCOGENES

Consistent with the need to coordinate ribosomal biogenesis with cell growth and proliferation,
the tumor suppressor proteins p53, RB, ARF, and PTEN have all been shown to inhibit
ribosomal biogenesis (Fig. 1). Specifically, p53, RB, and RB family member p130 prevent the
promoter recruitment of TFIIIB, a RNA Polymerase III (Pol III)-specific transcription factor,
leading to repression of Pol III-mediated transcription of tRNA and 5S rRNA required for
ribosome function and assembly.20–28 Transcription of rDNA to generate the rRNA
components of the ribosome is dependent on basal Pol I-specific transcription factors UBF and
TBP-containing SL1/TIF-IB complex. Both p53 and RB interfere with the assembly of the
UBF-SL1-Pol I initiation complex on the rDNA promoter, leading to repression of Pol I-
mediated transcription of rRNAs.29–32 PTEN also represses Pol I-mediated transcription of
rRNA by disrupting the SL1/TIF-IB complex and reducing the occupancy of the SL1 subunits
on the rDNA gene promoter.33 Finally, ARF has been shown to inhibit rRNA processing
possibly through enhancing proteasome-mediated degradation of nucleophosmin (also called
B23), an important nucleolar endoribonuclease required for rRNA processing.34,35 In
addition, ARF specifically interacts with the rDNA gene promoter and may play a direct
function in rRNA transcription.36 ARF also suppresses Pol III-mediated tRNA synthesis
independently of p53.37 In parallel, ARF activates p53 by blocking its negative regulator
MDM2, perhaps enhancing the suppression of the synthesis of rRNAs imposed by p53. In
summary, all of the above tumor suppressors efficiently suppress ribosomal biogenesis
presumably to coordinate with their negative regulation of the cell cycle.
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On the other hand, the tumor-promoting activity of the c-Myc oncoprotein is associated with
its role in enhancing ribosomal biogenesis (Fig. 1). c-Myc has been shown to regulate
transcription by all three RNA polymerases.38,39 Specifically, c-Myc enhances Pol I-
catalyzed rRNA synthesis by binding to TBP and TBP-associated factors (TAFs), thereby
facilitating the recruitment of Pol I to the rDNA promoter.40–42 c-Myc also enhances Pol III-
mediated 5S and tRNA transcription by directly interacting with and activating TFIIIB.43 In
addition, Pol II-mediated transcription of genes encoding ribosomal proteins, ribosome
assembly proteins, and translation initiation and elongation factors is stimulated by c-Myc.
44–47 These studies imply that many critical tumor suppressors and oncoproteins exert their
function by regulating the dynamics of ribosome biogenesis.

REGULATION OF THE P53-MDM2 FEEDBACK LOOP BY RIBOSOMAL
PROTEINS

Nature has evolved many elegant feedback surveillance mechanisms for important cellular
processes. Thus an interesting question arises as to whether ribosomal biogenesis components,
such as individual ribosomal proteins, in turn regulate the activity of tumor suppressors and
oncogenes. This question has recently been investigated by a number of groups, including our
own. It is now clear that several ribosomal proteins, including L5, L11, L23, S7, and L26, can
regulate p53 activity in response to different stresses by distinct mechanisms.48–55 We found
that ribosomal proteins L5, L11, and L23 appear to be the major steady-state components of
an MDM2-associated protein complex.49,51 These L proteins as well as S7, a small subunit
component, were shown to bind to MDM2 and inhibit MDM2-mediated p53 ubiquitination
and degradation, leading to p53 activation.48–53,55 These ribosomal proteins play a crucial
role in p53 responses to perturbation of ribosomal biogenesis (ribosomal stress, also called
nucleolar stress), such as those induced by the treatment with actinomycin D or 5-FU,51,56,
57 serum starvation,58 or genetic disruption of the transcription initiation factor TIF-IA.59
Based upon these studies, it is predicted that expression of dominant negative mutant
Bop1,60 or genetic disruption of ribosomal protein S68 may also activate p53 by utilizing these
ribosomal proteins. Furthermore, L26 has been shown to enhance p53 translation in response
to DNA damage.54 Thus, while p53 inhibits ribosome biogenesis, a group of individual
ribosomal proteins, in turn, activates p53, ensuring that ribosome homeostasis is preserved.
Since c-Myc is closely linked to ribosome biogenesis, we asked the question of whether
individual ribosomal proteins also regulate c-Myc activity. Indeed, our recent study has
demonstrated that L11 inhibits c-Myc activity through a negative feedback mechanism.61

FEEDBACK INHIBITION OF c-Myc ACTIVITY BY L11
The c-Myc oncoprotein is a basic helix-loop-helix leucine-zipper (bHLH/LZ) transcriptional
factor. It forms a heterodimer with its partner protein Max and binds to cognate DNA sequence
elements called E-box (CACGTG).39 The conserved Myc box (MB) II in the N-terminal
transcriptional activation domain (TAD) recruits several critical co-activators for c-Myc-
mediated transcription, including TRRAP, a core component of the TIP60 and GCN5
containing histone acetyltransferase (HAT) complexes,62 TIP48/TIP49 ATPases, components
of chromatin remodeling complexes,63 and Skp2, a component of the SCFskp2 E3 ligase
complex.64,65 In addition, the C-terminus of c-Myc recruits co-activators p300/CBP histone
acetyltransferase.39,66 By acetlyating histones and remodeling chromatin structure to a
transcriptionally active state, these co-activators mediate c-Myc-driven transcription of its
target genes that are implicated in cell growth, proliferation, differentiation, apoptosis,
metabolism, and neoplastic transformation.39,67,68 Although c-Myc is essential for normal
cell growth and animal development,69 deregulated expression of c-Myc due to chromosomal
translocations, gene amplification or viral insertions at the c-myc locus is linked to many types
of human cancers.39,70 Constitutive or inducible expression of a c-myc transgene leads to
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neoplastic pre-malignant and malignant phenotypes in mice.70–72 Thus, precise regulation of
c-Myc expression and transcriptional activity is critical for normal cellular function. Consistent
with this notion, c-Myc expression is regulated at multiple levels, including transcription,
mRNA stability, translation, and post-translation protein stability.73,74

In order to test whether individual ribosomal proteins could regulate c-Myc activity, we first
employed transfection-luciferase assays. We found that overexpression of L11 significantly
inhibited c-Myc-mediated transcription of a luciferase reporter driven by a c-Myc responsive
E box-containing E2F2 promoter. Moreover, overexpression of L11 inhibited c-Myc-driven
cell proliferation and expression of several endogenous c-Myc target genes. In agreement with
these observations, reduction of L11 by siRNA increased these c-Myc activities. Because many
ribosomal proteins have been shown as potential transcriptional targets of c-Myc,44–47 we
have verified that L11 is indeed a down stream target of c-Myc. Taken together, these results
demonstrate that L11 is a negative feedback regulator of c-Myc.61

What is the mechanism underlying the inhibition of c-Myc activity by L11? The finding that
L11 actually binds to c-Myc at the MB II region, which is critical for all c-Myc activity and
essential for c-Myc to recruit a number of its co-activators, led us to test whether this L11-c-
Myc binding would interfere with the recruitment of these co-activators. Indeed, we found that
both ectopic and endogenous L11 specifically associated with c-Myc at c-Myc target gene
promoters and overexpression of L11 significantly reduced the binding of TRRAP to c-Myc,
and thereby histone acetylation at these promoters. In line with these results, L11- and TRRAP-
bindings to a c-Myc target promoter displayed reverse profiles in response to growth signals
mediated by serum starvation and re-stimulation regimes. These results suggest that L11
attenuates c-Myc-mediated gene transcription via interfering with the recruitment of the
TRRAP co-activator to c-Myc target gene promoters,61 further emphasizing the central
importance of the MB II region in c-Myc-mediated transactivation and its regulation by c-Myc
regulators.39,75

Interestingly, the inhibitory effect of L11 on c-Myc activity resembles the regulation of c-Myc
by ARF.76–78 Similarly, ARF binds to the MB II79 and suppresses c-Myc activity, although
it has not been tested if ARF may do so by interfering with the TRRAP recruitment and
subsequent histone acetylation. Intriguingly, the inhibitory effect of ARF on c-Myc is selective
to its transactivational, but not repression, activity.78 It is still unclear whether this selectivity
would also be true to L11. Also, it is unknown whether L11 and/or ARF could interfere with
the recruitment of other co-factors, such as TIP48/TIP49 or Skp2, by c-Myc to c-Myc target
promoters. These are certainly interesting and important questions for future investigation.

L11 REGULATES c-Myc LEVELS
In addition to directly inhibiting c-Myc-dependent transcription by competing with TRRAP
for promoter binding, we have also shown that L11 expression is well correlated with the
change in c-Myc levels.61 Initially, we found that reduction of L11 by siRNA drastically
induced the protein level of c-Myc in human osteosarcoma U2OS cells. This protein induction
was at least partly due to increased levels of c-myc mRNA (Fig. 2). The increase in c-myc
mRNA might be caused by an increase in either gene transcription or mRNA stability. It has
been shown that c-Myc can auto-inhibit its own transcription, though by an unknown
mechanism.80,81 It is possible that knockdown of L11 may derepress this autoregulatory
inhibition imposed by c-Myc itself. Toward this end, it would be worth investigating whether
L11 associates with c-Myc at the promoter region of the c-myc gene. Another possibility is
that L11 may regulate c-myc gene transcription independently of its binding to the c-Myc
protein. For example, L11 might directly interfere with transcriptional machineries or with the
remodeling of chromatin structure in the promoter region of the c-myc gene by binding to
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histones, since several drosophila ribosomal proteins have recently been shown to associate
with linker histone H1 and suppress transcription of a set of genes.9 Correlated with this
possibility, we have recently purified an L11-associated complex that also contains the linker
histone H1 (data not shown).

L11 could also influence c-myc mRNA stability. c-myc mRNA has a short half-life of 15–30
minutes. Two cis-acting sequence elements have been shown to regulate c-myc mRNA
turnover: an AU-rich element (ARE) in the 3′-untranslated region (3′-UTR) and a ~250
nucleotide region called coding region instability determinant (CRD). Several ARE binding
proteins, including AUF182 and HuR,83 have been found to bind to the c-myc ARE and act
as c-myc mRNA destabilizing factors. Furthermore, CRD-binding protein (CRD-BP) binds to
the CRD in the c-myc mRNA and protects it from endoribonuclease cleavage within the CRD,
leading to stabilization of c-myc mRNA.84–86 The latter regulation has been implicated in the
stabilization of c-myc mRNA in response to β-catenin signaling.87 Thus, one interesting and
pertinent question for future study would be if L11 regulates c-myc mRNA levels through
interaction with these components.

Since knockdown of L11 leads to an increase in c-Myc mRNA and protein expression, one
would predict that overexpression of L11 might reduce c-Myc levels. However, we surprisingly
observed an increase in the total level of ectopically expressed c-Myc when L11 was
overexpressed. This increase was accompanied by a concurrent decrease in the population of
NP-40-extractable and soluble c-Myc. One possible explanation is that L11 might facilitate
the subcellular localization of c-Myc to insoluble chromatin-bound material or to nucleolar
compartments, resulting in the decrease of soluble c-Myc. This indeed was the case, as
overexpression of L11 relocalized a fraction of ectopic c-Myc into the nucleolus (Fig. 3). This
sequestration required the interaction of c-Myc with L11, as a c-Myc-binding defective mutant
of L11 did not re-localize c-Myc into the nucleolus (data not shown). c-Myc was shown to be
degraded in the nucleolus by the proteasome,88 however its level was elevated in this
subcellular compartment in the presence of overexpressed L11 (Fig. 3), suggesting that L11
may simply block c-Myc degradation in the nucleolus. Also, in our preliminary study using
chromatin immunoprecipitation (ChIP) assays, we found that overexpression of L11 increased
the residence of c-Myc at its target gene promoters (data not shown), suggesting that L11 may
block c-Myc turnover at the promoter as well. Others have shown that Skp2-mediated c-Myc
turnover at the promoter is essential for proper c-Myc function and Spk2 also binds to the MB
II.64,65 Hence, it is tempting to speculate that L11 may compete with Skp2 for binding to c-
Myc at its target gene promoters, leading to accumulation of inactive c-Myc at these promoters.

Taken together, the evidence as described here suggests that multiple mechanisms may account
for the inhibitory effect of L11 on c-Myc activity: directly blocking the transactivational
activity of c-Myc at c-Myc target gene promoters, controlling c-myc mRNA levels, and
sequestering excess c-Myc protein. However, further studies are necessary to verify and dissect
the latter two mechanisms. This complex regulation also highlights the important role for L11
in regulating c-Myc and may be a key feedback regulation during ribosomal biogenesis.

IS THE INHIBITION OF c-Myc SPECIFIC TO L11?
In addition to L11, there are other ribosomal proteins that have been shown to play a role in
regulating p53 activities.48–55 Thus, an obvious question is whether the effect of L11 on c-
Myc is specific to this ribosomal protein. In our recently reported work,61 we have attempted
to address this question by testing several other ribosomal proteins for their binding capacity
to c-Myc. We found that L29, L30, and S12 do not bind to c-Myc. In addition, neither
overexpression of L29 nor knockdown of L29 affected c-Myc activity.61 Thus clearly, the
inhibition of c-Myc activity is not a general effect for all ribosomal proteins.

Dai et al. Page 5

Cell Cycle. Author manuscript; available in PMC 2009 June 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



However, L11 is not the only ribosomal protein that binds to c-Myc either. Among our tested
ribosomal proteins, L5, L23, and S7, which have all been shown to bind to MDM2,48,49,51,
52 were found to bind to c-Myc as well, though with different binding affinity (data not shown).
Although further studies are necessary to clarify whether these ribosomal proteins act similarly
to L11, these results suggest that a group of individual ribosomal proteins may target both c-
Myc and the MDM2-p53 pathways. In support of this hypothesis, our preliminary work shows
that L29, L30, and S12, which do not bind to c-Myc, also do not bind to MDM2 (data not
shown). The use of a common subset of ribosomal proteins to control both MDM2 and c-Myc
activity may ensure the coordination of ribosomal biogenesis with cell cycle progress. It is also
possible that these ribosomal proteins may work in concert or synergistically to reach an
optimal and efficient effect on c-Myc activity. Or, they may work independently in response
to different ribosomal biogenesis stresses. More experiments are necessary to define the
individual role for each of these ribosomal proteins in regulating both c-Myc activity and c-
myc mRNA levels.

BIOLOGY OF THE L11-C-MYC FEEDBACK LOOP
Our finding that L11 regulates c-Myc level and activity raises additional questions: what is the
physiological significance of the L11-c-Myc inhibitory feedback regulation? Under what
circumstance is this feedback loop activated? Is it responsive to ribosomal stress signals?
Presumably, the excess molecules of L11 that can target c-Myc may be generated from either
a net increase in L11 synthesis or release of L11 from the intact ribosome into ribosome-free
pools. Deregulated and high levels of c-Myc apparently enhance ribosomal biogenesis and L11
production. Our finding suggests that this increased L11 could then target c-Myc and turn it
off. A future project would be to confirm this feedback loop in vivo by employing genetically
manipulated mouse models.

The balance of ribosome-bound and ribosome-free L11 molecules may serve as an important
signal for activation of the L11-c-Myc feedback loop. Under nucleolar stress, L11 may be
released from the nucleolus as the result of the stalled process of ribosomal biogenesis. In such
a case, ribosome-free L11 may be in excess and then execute the inhibitory effect on c-Myc
activity, as it does to the MDM2-p53 pathway.58 Our study also indicates that L11 regulates
c-Myc activity dependent on growth signals.61 In response to serum starvation, the association
of L11 with c-Myc target gene promoters increased and thus L11 competed with TRRAP for
binding to these promoters, leading to inhibition of c-Myc-dependent transcription. By doing
so, L11 may play a role in maintaining a silent or inhibited status of ribosomal biogenesis when
growth conditions are unfavorable for cell growth or proliferation. Conversely, In response to
serum re-stimulation, c-Myc levels rapidly increased while L11 binding to c-Myc target gene
promoters inversely decreased, indicating that the L11 repression of c-Myc activity is de-
repressed at a stage when c-Myc activity is required for cells to proliferate.61 It seems that the
acutely increased L11 molecules in the early serum re-stimulation stage do not target c-Myc
instantly. Instead, these L11 molecules might be used to limit c-Myc activity at the later stage
of serum stimulation in order to prevent aberrant cell growth. The increased L11 could just be
simply incorporated into ribosomes for protein synthesis. This delayed targeting of c-Myc by
L11 may suggest that additional factors, possibly posttranslational modifications, could
regulate L11-c-Myc interaction. Nevertheless, our studies suggest that the L11-c-Myc
feedback loop is highly regulated in cells and functionally responsive to growth or stress
signals. One untested question is whether L11 may regulate c-Myc activity or level in response
to other ribosomal stresses, such as those induced by 5-FU, actinomycin D, or UV damage. It
has been demonstrated by others that aberrant proliferation signals, such as overexpression of
c-Myc, induce ARF through unknown mechanisms. ARF in turn binds to c-Myc and inhibits
its activity, similar to L11.24,76–78 An additional, if not the last, question would be whether
L11 also represses c-Myc activity in response to oncogenic stress.
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CONCLUSION
Recent studies including ours as described here have demonstrated an important role for L11
in cell cycle control by regulating the MDM2-p53 feedback loop as well as the c-Myc pathway.
53,55,58,73 Remarkably, L11 resembles ARF in these regulations, but also works
independently of ARF. In light of currently available evidence, we propose a model (Fig. 4)
for the action of L11 and ARF. In this model, L11 may primarily acts as a sensor of aberrant
ribosomal biogenesis, whereas ARF primarily acts as a sensor of oncogenic stress.35 The
remaining questions would be: whether these two stress signaling pathways crosstalk with each
other, whether L11 itself possesses tumor suppressor function, and whether L11-c-Myc and
L11-MDM2 interactions have implications in tumor treatment?
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Figure 1.
Regulation of ribosomal biogenesis by tumor suppressors and c-Myc. The tumor suppressors
p53, RB, PTEN, and ARF reduce the ribosomal biogenesis by either inhibiting Pol I and III-
mediated synthesis of rRNAs or rRNA processing, whereas c-Myc enhances ribosomal
biogenesis though up-regulation of transcription mediated by all three RNA polymerases. Bars
indicate inhibition; arrows denote activation.
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Figure 2.
L11 regulates c-myc mRNA levels. U2OS cells were transfected with scrambled or L11 siRNAs
against two different sequences followed by semi-quantitative RT-PCR assays.
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Figure 3.
L11 re-localizes ectopic c-Myc into the nucleolus. H1299 cells transfected with V5-c-Myc
alone or together with Flag-L11 were immunostained with anti-c-Myc, anti-Flag, or anti-B23
antibodies as indicated.
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Figure 4.
A schematic model illustrating the dual effects of L11 and ARF on cell cycle arrest. L11, in
response to nucleolar stress, and, ARF in response to oncogenic stress, bind to MDM2 and
suppress MDM2-mediated p53 inhibition, leading to p53 activation. They also bind to c-Myc
and inhibit its transactivation activity. Bars indicate inhibition, whereas arrows denote
activation.
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