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48.1 INTRODUCTION

The tumor suppressor p53 is one of the most important and 
intensively studied molecules in biomedical research. Since 
its discovery 28 years ago, more than 43,000 articles have 
been published about p53. These studies cover nearly all 
aspects of biomedical research, encompassing biochemistry, 
biophysics, molecular biology, cellular biology, genetics, 
pharmacology, toxicology, metabolism, immunology, bioin-
formatics, as well as clinical research. Tremendous effort has 
been spent elucidating the mechanisms underlying p53’s 
tumor suppressive function and how it is regulated. Still, there 
is much ground to cover before p53 and its signaling pathways 
are fully understood. However, this fact does not prevent the 
application of our current knowledge to the development of 
strategies for treating cancer patients using the p53 pathway 
as a therapeutic target. Indeed, a number of strategies, such as 
introduction of functional wild-type p53 into cancer cells and 
inhibition of MDM2-mediated p53 suppression, have been 
investigated in recent years. In this chapter, we will review 
p53’s properties and functions, as well as its regulation in 
response to diverse cellular stressors. We will also briefl y 
describe recent progress in the development of anticancer 
therapies that target the MDM2-p53 feedback loop. p53 gene 
delivery-based gene therapy will be discussed in a separate 
chapter.

The p53 protein is a stress-activated transcription factor; 
therefore activated p53 can either induce or repress the tran-
scription of many target genes. The proteins encoded by these 
target genes are involved in the regulation of multiple biologi-
cal functions, including cell cycle, apoptosis, cell senescence, 
differentiation, angiogenesis, cell migration, and DNA repair 
[1]. Diverse stressors, including DNA damage, oncogene acti-
vation, hypoxia/anoxia, ribonucleotide depletion, and loss of 

support/survival signals, stabilize the p53 protein and enhance 
its activity [2]. The importance of p53 in tumor suppression is 
highlighted by the fact that more than half of all types of 
human tumors harbor mutations or deletions in the p53 gene, 
and the remainder often have impaired function of the p53 
pathway through the involvement of direct or indirect p53 
regulators [3–6]. Germ-line mutations of p53 have been iden-
tifi ed in individuals with the cancer-prone Li-Fraumeni syn-
drome [7,8]. Similar to human cancers, mice homozygous for 
inactivated p53 are highly susceptible to spontaneous tumori-
genesis [9], and transgenic mice expressing hot-spot gain-of-
function p53 mutations develop tumors in various tissues 
[10,11]. These studies establish p53 as a principal “guardian of 
the genome” and demonstrate that p53 plays an essential role 
in protecting the organism from tumorigenesis.

The p53 protein possesses the typical structural domains 
of a transcription factor, as well as several unique domains. 
These features include the DNA-binding domain, the transac-
tivation domain, the oligomerization domain, the basic regu-
latory region, and the proline-rich domain. These features of 
the p53 protein allow for the dynamic regulation of p53’s sta-
bility and activity in response to various external and internal 
cellular stressors. The central DNA-binding domain mediates 
sequence-specifi c binding to chromatin [12–14]. The majority 
of p53 gene mutations, which are found in human cancers 
occur in this domain, emphasizing the importance of this 
region for p53’s function [15]. These mutations alter the con-
formation of p53 and effect the folding of the DNA-binding 
domain, therefore disrupting the capacity of p53 to bind to its 
DNA target, rendering it inactive. This domain has also been 
shown to interact with the ASPP (Ankyrin repeat, SH3 
domain, and proline-rich domain containing) family proteins 
ASPP1 and ASPP2, allowing p53 to preferably activate tran-
scription of proapoptotic genes such as Bax and PIG3 [16]. 
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The N-terminal, bipartite acidic transactivation domain 
makes contacts with basal transcription factors and coactiva-
tors, thus initiating transcriptional activation of target genes 
[17,18]. The C-terminal oligomerization domain allows p53 to 
form a tetramer and is required for its transcriptional activity 
[12]. The basic regulatory region at the extreme C-terminus is 
thought to regulate the sequence-specifi c binding activity of 
the central core DNA-binding domain and contributes to p53’s 
ability to recognize several forms of DNA that resemble struc-
tures caused by DNA-damaging agents [12,19–24]. Finally, 
the p53 N-terminal proline-rich domain, containing fi ve 
copies of the sequence PXXP, has been shown to be important 
for the p53-induced apoptotic response to DNA-damaging 
agents [25–30].

48.2 BIOLOGICAL FUNCTIONS OF p53

Upon activation, p53 binds to its cognate DNA response ele-
ments (p53RE) in the genome and activates or represses the 
transcription of genes residing in the vicinity of these binding 
sites. There are over 4000 putative p53-binding sites existing 
in the human genome [31]. More than 150 p53 target genes 
have been described and many more will be revealed with the 
development of advanced molecular technology. The proteins 
encoded by these genes contribute to diverse biological func-
tions of p53 in multiple ways, including inducing cell cycle 
arrest, apoptosis, senescence, and angiogenesis [1]. In addi-
tion, p53 may facilitate DNA repair directly or indirectly 
through the induction of genes associated with DNA repair. 
These cellular responses to p53 activation can be variable and 
highly dependent on both cell type and the nature of the sus-
tained damage.

Proper cell cycle checkpoints ensure that genomic integ-
rity is maintained throughout cell division. p53 plays a role in 
both the G1 and the G2 checkpoints of the cell cycle, in part 
by induction of its target genes p21WAF1/CIP1 (p21 will be used 
hereafter), 14-3-3-s, and GADD45. The p21 protein inhibits 
cyclin D-dependent kinases (CDK). CDKs phosphorylate Rb, 
thereby causing the dissociation of Rb from E2F, allowing 
E2F to activate the expression of proteins important for the 
progression of the cell cycle [32]. As a result, p21 maintains 
the Rb–E2F complex and indirectly inhibits E2F activity, pre-
venting the G1-S transition [15,33]. The 14-3-3-σ and GADD45 
proteins inhibit cyclin B-CDC2 kinase activity, which is 
essential for the G2-M transition. In response to DNA damage, 
14-3-3σ binds to phosphorylated Cdc25, a tyrosine protein 
phosphatase for CDC2, and sequesters Cdc25 in the cyto-
plasm where it cannot activate CDC2. Then the GADD45 
protein dissociates CDC2 from cyclin B, blocking the G2-M 
phase transition [34,35]. Thus, p53 also mediates the G2 cell 
cycle arrest [36,37].

Depending on the type and duration of the stress and the 
cellular growth conditions, p53 can activate different subsets 
of target genes with proapoptotic activity [1,38]. These genes 
encode the cell membrane proteins Fas/CD95, KILLER/DR5, 
and PERP [39–43], the cytoplasmic proteins PIDD and PIG 
(p53-inducible gene family), and mitochondrial proteins, such 

as BAX, NOXA [44], PUMA [45], p53AIP1 [46], BID, and 
others. These proteins trigger the death-receptor-mediated 
[47,48] and mitochondrial-mediated apoptotic pathways 
[49,50]. In addition, p53 can interact directly with antiapop-
totic proteins, such as Bcl-XL and Bcl-2, to exert its apopto-
genic function in the mitochondria, independent of its 
transcription activity [51–53]. Also, activation of autophagy 
by the p53-induced protein DRAM has also been described as 
an important contribution to the apoptotic response [54]. 
Therefore, primarily by inducing cell cycle arrest or apopto-
sis, p53 provides a crucial surveillance mechanism for allow-
ing cells to either recover from stress or to be eliminated from 
the replicative pool, thus preventing growing cells from under-
going malignant transformation.

In addition, p53 plays an important role in maintenance 
of genomic stability by mediating DNA repair [55–57]. It 
has been shown that p53 is involved in various types of 
DNA repair, including nucleotide excision repair (NER), 
base excision repair (BER), nonhomologous end-joining 
(NHEJ) and homologous recombination (HR) [58–62]. For 
example, p53-dependent transcriptional activity is impor-
tant for regulation of NER by p53 [61]. p53 binds to the 
NER-associated helicases XPB and XPD and modulates 
their activities [63,64]. It also regulates the expression of 
the DDB2 and XPC [65–67], and serves as a chromatin 
accessibility factor for NER of DNA damage [68]. Further, 
p53 also binds to RAD51 and RAD54, major components of 
the HR machinery, and controls the level of HR [69,70]. 
Therefore, p53 regulates DNA repair as well as the DNA 
damage response.

In addition to its role in gene maintenance, p53 stimulates 
the expression of genes important for suppression of blood 
vessel formation (angiogenesis). Angiogenesis is critical for 
tumor progression [71]. At least three mechanisms account for 
this inhibitory effect of p53 on angiogenesis: Interference 
with the central regulators of hypoxia that mediate angiogen-
esis, inhibition of the production of proangiogenic factors, 
and direct increase of the production of endogenous angio-
genesis inhibitors. These mechanisms license p53 to shut 
down the angiogenic potential of cancer cells and prevent 
tumor growth, progression, and metastasis [71]. Recently, p53 
has been shown to inhibit hypoxia-inducible factor-1 (HIF-1) 
activity; HIF-1 induces angiogenic factors in response to 
hypoxia and impairs cardiac angiogenesis in response to pres-
sure overload. As a consequence, p53 prevents the develop-
ment of cardiac hypertrophy and induces systolic dysfunction 
in response to sustained pressure overload, therefore fulfi lling 
a crucial function in the transition from cardiac hypertrophy 
to heart failure [72].

Of further interest, p53 also can activate the transcription 
of some noncoding RNAs, resulting in cell growth inhibition 
and apoptosis. For example, p53 induces the expression of 
miRNA-34a, which also contributes to p53-mediated cell cycle 
arrest and apoptosis [73–76]. Moreover, p53 represses RNA 
polymerase (Pol  I)-mediated transcription of precursor 
rRNAs and Pol III-mediated transcription of tRNAs and 
5S rRNA, leading to inhibition of ribosomal biogenesis [77]. 
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p53 has been shown to repress the Pol II-mediated transcrip-
tion of U1 snRNA [78] and Pol III-mediated transcription of 
U6 snRNA [79,80]. Therefore, there are many layers to p53’s 
role in cell growth.

The tumor suppressive function of p53 is validated con-
cretely by several in vivo mouse models. It is fi rmly estab-
lished that p53 knockout mice die within 10 months due to a 
variety of spontaneous tumors [9]. Remarkably, restoration of 
endogenous p53 expression in p53-defi cient tumors leads to 
complete regression of these tumors due to cell cycle arrest, 
apoptosis, senescence, and initiation of an innate immune 
response [81,82]. These studies place important emphasis on 
the fact that, although cancer arises from a combination of 
mutations in oncogenes and tumor suppressor genes, p53 defi -
ciency is required for maintenance of aggressive tumors. Also, 
these in vivo studies provide an incredibly solid foundation 
for cancer therapeutic strategies aimed at reintroduction of 
p53’s function.

48.3 MDM2: A FEEDBACK INHIBITOR OF p53

The ability of p53 to induce apoptosis or cell cycle arrest can 
be detrimental to normal cell growth if left uncontrolled. 
Therefore, it is essential for a cell to tightly control p53 acti-
vity during normal development and cell growth. Under physio-
logical conditions, p53 is maintained at an extremely low and 
inert level with a half-life of approximately 30 min. This rapid 
turnover of p53 is due to its ubiquitylation-mediated protea-
somal degradation. Although a number of ubiquitin ligases, 
such as Pirh2, COP1, and alternative reading frame (ARF)-
BP1, have been shown to ubiquitylate p53 [83], the central and 
most extensively studied ubiquitin ligase is the oncoprotein 
MDM2. The mdm2 gene was originally identifi ed on a mouse 
double minute chromosome in the 3T3DM cell line [84]. It 
can immortalize and, in cooperation with Ras, transform rat 
embryonic fi broblasts [85]. Consistent with this study, overex-
pression or gene amplifi cation of mdm2 has been shown in a 
variety of human tumors, particularly in soft tissue sarcomas, 
carcinomas, leukemias, lymphomas, breast and lung cancers 
[86–91]. More recent data have shown that a naturally occur-
ring polymorphism (SNP309) within the mdm2 promoter 
leads to an increase in mdm2 mRNA and protein in human 
populations [92], which may be related to higher incidence of 
cancers.

MDM2 is a nuclear phosphoprotein, which possesses sev-
eral important functional domains, including the p53-binding 
domain, a central acidic region with a C4 zinc fi nger, and a 
C-terminal RING domain, which confers MDM2’s E3 ligase 
activity. MDM2’s N-terminal p53-interacting domain medi-
ates MDM2’s binding to the N-terminal transcriptional acti-
vation domain of p53, thus interfering with p53’s ability to 
interact with the transcription machinery [93,94]. The central 
acidic domain of MDM2 is pivotal for MDM2-mediated p53 
degradation, but not p53’s ubiquitylation [95,96]. A number of 
proteins, such as the ribosomal proteins L5 and L23, and 
ARF, bind to this domain, leading to inhibition of MDM2-
mediated p53 degradation. The C-terminal side of the acidic 

domain contains a C4 zinc fi nger domain, which has recently 
been shown to mediate the binding of MDM2 to ribosomal 
protein L11. Mutation of residue Cys 305 to either Phe or Ser 
resulted in the loss of L11 binding to MDM2 and stabilization 
of p53, indicating this region may also play an important role 
in controlling p53 degradation [97]. The C-terminal RING 
fi nger domain is required for the E3 ligase activity of MDM2 
[98]. MDM2 also contains a nuclear localization signal (NLS) 
and a nuclear export signal (NES), which mediates the shut-
tling of MDM2 between the cytoplasm and the nucleus and 
also provides a mechanism to regulate p53’s activity [99,100]. 
Further, within the RING domain, amino acids 464–471 can 
function as a nucleolar localization signal (NoLS) [101]. All 
of these domains in MDM2 are crucial for regulating p53’s 
stability and activity.

MDM2 inhibits p53’s function through several mecha-
nisms. MDM2 binds p53 specifi cally, linking their N-terminal 
domains. This binding conceals the N-terminal transcription 
activation domain of p53 at its target promoters, preventing 
the interaction of p53 with the basal transcription machinery. 
Also, by occupying at p53’s target promoters with p53, 
MDM2 can also interact with histones and promote mono-
ubiquitylation of histone H2B in the vicinity of a p53-binding 
site [102–105]. These actions lead to the inhibition of p53’s 
transcriptional activity [94,106]. In addition, this binding ini-
tiates the ubiquitylation of p53 at several C-terminal lysine 
residues, catalyzed by the C-terminal RING-fi nger domain 
of MDM2; this ubiquitylation results in p53’s degradation by 
the 26S proteasome [98,107]. MDM2 was recently found to 
differentially catalyze monoubiquitylation and polyubiquity-
lation of p53 in a dosage-dependent manner [108]. As a 
consequence, low levels of MDM2 activity induce mono-
ubiquitylation and nuclear export of p53, whereas high levels 
promote polyubiquitylation and nuclear degradation of p53. 
It seems likely that these distinct mechanisms are employed 
under different physiological settings. For example, MDM2-
mediated polyubiquitylation and nuclear degradation may 
play a critical role in suppressing p53’s function during the 
later stages of a DNA damage response, or when MDM2 is 
malignantly overexpressed [109,110]. On the other hand, 
MDM2-mediated monoubiquitylation and subsequent cyto-
plasmic translocation of p53 may represent an important 
means of p53 regulation in unstressed cell, where MDM2 
maintained at low levels [111–114]. Moreover, MDM2 was 
also reported to promote NEDD8 conjugation of p53. The 
C-terminal glycine residue of the ubiquitin-like protein 
NEDD8 can be covalently linked to Lys 370, 372, or 373 of 
p53. This modifi cation inhibits p53’s transcriptional activity 
without affecting p53’s protein stability [115]. The lysine resi-
dues modifi ed by neddylation are three of the six lysines 
also targeted by ubiquitylation. Whether neddylation aug-
ments ubiquitylation is not yet clear. Interestingly, the mdm2 
gene is a downstream target gene of p53 [116,117], thus 
forming a negative feedback loop [118,119]. Indeed, genetic 
disruption of p53 rescues the lethal phenotype of mdm2 
knockout mice [120,121], fi rmly validating that MDM2 is a 
critical inhibitor of p53.

8768_C048.indd   10218768_C048.indd   1021 4/23/2008   10:01:52 AM4/23/2008   10:01:52 AM



1022 Gene and Cell Therapy: Therapeutic Mechanisms and Strategies

48.4 p53 STRESS RESPONSE

To activate p53, cells must overcome the MDM2-p53 negative 
feedback circuit. Multiple pathways can lead to activation of 
p53 in response to a wide variety of cellular stressors, includ-
ing DNA damage, oncogenic stress, ribosomal stress, and 
others, such as those induced by hypoxia, reactive oxygen 
species, telomere erosion, and the loss of survival signals 
[122,123]. All of these stressors lead to disruption of the nega-
tive control of p53 imposed by MDM2 through shared or dis-
tinct pathways or cellular components.

DNA damage triggers an Ataxia telangiectasia mutated 
kinase (ATM) or ataxia telangiectasia RAD3-related kinase 
(ATR) kinase-dependent phosphorylation cascade and results 
in p53 activation. In response to ionizing radiation (IR), p53 
is phosphorylated at Ser 15 by ATM kinase [124–127] and at 
Ser 20 by Chk2, which is phosphorylated by ATM [128–130]. 
In response to UV damage, p53 is phosphorylated at Ser 15 
by ATR kinase [131,132] and at Ser 20 by Chk1, which is 
phosphorylated and activated by ATR [133]. Although phos-
phorylation of Ser 15 and Ser 20 did not diminish the binding 
of an N-terminal p53 peptide to MDM2, subsequent phos-
phorylation of Thr 18 drastically reduced p53-MDM2 bind-
ing [134]. Since phosphorylation of Thr 18 requires prior 
phosphorylation on Ser 20, DNA damage-induced phosphory-
lation of p53 at the N-terminal residues within the MDM2 
binding region impairs the binding of MDM2 to p53 and 
blocks its inhibitory effect on p53. Similar to p53, phosphory-
lation of MDM2 also plays a role in p53’s activation during a 
DNA damage response. Most MDM2 phosphorylation sites 
are clustered within MDM2’s N-terminal p53-binding 
domain and the central acidic domain. For example, MDM2 
is phosphorylated by DNA-PK at Ser 17. This phosphoryla-
tion might play a role in blocking the MDM2—p53 interac-
tion [135]. ATM phosphorylates MDM2 at Ser 395 and 
impairs MDM2’s ability to promote p53 degradation, possi-
bly through phosphorylation-dependent inhibition of p53’s 
nuclear export by MDM2 [136–138]. In addition to the regu-
lation of p53’s stability upon DNA damage, phosphorylation 
also regulates the recruitment of transcriptional coactivators 
such as p300/CBP to p53, thus enhancing p53’s transcrip-
tional activity [139]. Taken together, DNA damage triggers 
the activation of p53 through phosphorylation of both p53 
and MDM2, impairing MDM2’s ability to bind to p53, there-
fore relieving its inhibitory effect on p53.

The MDM2–p53 feedback loop is also subjected to regu-
lation through protein–protein interaction. One critical player 
of this regulatory mechanism is ARF (p14ARF in human, 
p19ARF in mouse) that is encoded by the INK4a locus and 
translated in an ARF, when compared to the reading frame 
for the CDK inhibitor p16 [140]. ARF activates p53 in response 
to aberrant growth and proliferation signals, such as those 
induced by the overexpression of the oncogenes Ras [141], 
c-Myc [142], E2F [143], E1A [144], or β-catenin [145]. It binds 
to the central acidic domain of MDM2 and directly inhibits 
MDM2 ubiquitin ligase activity, both in vitro and in cells 
[146], thus leading to stabilization and activation of p53 

[146–150]. Because of this function, ARF also acts as an 
important tumor suppressor [137,151,152].

Another group of proteins, which activate p53 through 
direct interaction with MDM2 and suppression of MDM2’s 
activity, are ribosomal proteins. Recently, at least four ribo-
somal proteins, including L11, L5, L23, and S7 [83,153–158], 
have been shown to interact with MDM2 in response to ribo-
somal stress caused by perturbation of ribosomal biogenesis.

The ribosome is a fi netuned cellular machine that trans-
lates cellular mRNA through a static, higher-ordered cellular 
process, into proteins [159,160]. To produce a ribosome, 
eukaryotic cells must assemble about 79 ribosomal proteins 
with four different ribosomal RNA (rRNA) species (28S, 18S, 
5.8S, and 5S) into ribosomal subunits in the nucleolus 
[161,162]. Notably, all three RNA polymerases (I, II and III) 
are involved in this process and are coordinated to ensure the 
high effi ciency and accuracy of ribosome production. Together, 
these complex processes are called ribosomal biogenesis and 
of fundamental importance for normal cell growth and prolif-
eration. Therefore, it is also perfectly coupled with cell growth 
and proliferation. Illustrating this point are studies showing 
that interference with ribosome production severely retards 
animal growth and development, at both the cellular level and 
the organism level.

Since ribosomal biogenesis occurs primarily in the nucleo-
lus and many external and internal stimuli lead to the disrup-
tion of the nucleolus, it is understandable that perturbation of 
the nucleolus or nucleolar protein production would be linked 
to p53 activity along with other types of stress [163], This spe-
cifi c type of stress is often referred to ribosomal (or nucleolar) 
stress, and can be triggered by actinomycin D or 5-fl uorouracil 
(5-FU) treatment [164–166], serum starvation [167], the 
expression of dominant-negative Bop1 [168], or the genetic 
disruption of ribosomal protein S6 and TIF-IA [169,170]. In 
response to ribosomal stress, free L5, L11, L23, and S7 may 
be released to the nucleus or the cytoplasm where they bind to 
MDM2 and inhibit MDM2-mediated p53 suppression 
[83,153–158]. These studies suggest that p53-dependent cell 
cycle checkpoints monitor the malfunction ribosomal biogen-
esis. Interestingly, like ARF, these individual ribosomal pro-
teins are small basic proteins. They also bring up several 
important questions. Why do so many basic nucleolar pro-
teins bind to and inhibit MDM2’s function? Do these nucleo-
lar proteins collaborate to produce an optimal stress response? 
Would they play a role in response to different nucleolar 
stressors remain? Finally, how might the regulation of ribo-
somal proteins play a role in preventing tumorigenesis 
remains?

48.5  OTHER REGULATORS OF THE MDM2–p53 
FEEDBACK LOOP

Besides the aforementioned proteins, the MDM2–p53 feed-
back loop is also subjected to regulation by many other pro-
teins. The transcriptional coactivators p300 and CBP appear to 
exert a dual function on this loop [171]. p300/CBP acetylates 
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p53 and stimulates its activity. This acetylation can be inhibi-
ted by MDM2 [172,173]. Additionally, p300/CBP interacts 
with MDM2 in nuclear body-like structures, where MDM2 
might be protected from proteasomal degradation [174] 
and cooperates with MDM2 to degrade p53 [171,175,176]. 
Consistently, MDM2 mutants lacking the p300/CBP-binding 
domain within MDM2’s central acidic domain failed to 
degrade p53, but still promoted monoubiquitylation of p53 
[177,178]. More recently, p300/CBP was shown to act as an E4 
enzyme to assist MDM2 in polyubiquitylation of p53 [179]. It 
is yet unclear what physiological conditions may cause p300 to 
regulate this portion of the feedback loop and if the overall 
outcome of this stimulus would be the positive or negative 
regulation of p53.

Another key regulator of MDM2 is its homolog, MDMX, 
which assists MDM2 in downregulating the p53 function 
[180]. MDMX shares signifi cant homology with MDM2 in 
its N-terminal p53-binding domain and its C-terminal 
RING-fi nger domain [181]. Like MDM2, MDMX binds p53 
and inhibits its function [182–184]. As in the case of MDM2, 
genetically targeting the p53 gene also rescues the lethal 
phenotype of mdmx knockout mice, suggesting that MDMX 
is critical for MDM2-p53 feedback regulation as well 
[185–187]. Increased expression of MDMX is frequently 
observed in human tumors [188–190]. However, unlike 
MDM2, the expression of MDMX is not regulated by p53 
[180], and MDMX alone does not ubiquitylate p53 
[182,186,191,192]. Also distinct from MDM2, MDMX 
appears to reside mostly in the cytoplasm [186,193], but can 
be recruited to the nucleus by MDM2 [186,194]. The nuclear 
import of MDMX is also induced by DNA damage signals, 
such as γ irradiation [195]. In the absence of MDMX, MDM2 
is relatively ineffective at downregulating p53 because of its 
extremely short half-life. MDMX aids MDM2 through an 
interaction between MDM2 and MDMX’s RING-fi nger 
domains. This interaction suffi ciently stabilizes MDM2 and 
enables it to degrade p53 at its optimal turnover rate [194]. 

MDMX is also degraded by MDM2 [196,197]. Moreover, 
ARF prevents MDM2 from degrading p53 and shifts MDM2 
activity to degrade MDMX instead [197]. Therefore, MDM2 
and MDMX may have different roles in inhibiting p53. 
MDMX is thought to enhance MDM2-mediated p53 ubiqui-
tylation and degradation [198,199], consequently repressing 
p53’s function. Interestingly, in response to ionizing or UV 
irradiation, MDMX is phosphorylated at Ser 376 by ChK2 
or ChK1 and this phosphorylation leads to the interaction of 
MDMX with 14-3-3 proteins. As a result, MDMX loses its 
ability to suppress p53, thus leading to p53 activation 
[200,201]. Therefore, to activate p53, stress signals must turn 
on cellular mechanisms that surmount the negative control 
by MDM2 and MDMX.

Finally, the MDM2–p53 feedback loop is regulated by 
deubiquitylation. Herpes virus-associated ubiquitin-specifi c 
protease (HAUSP), an ubiquitin hydrolase, was shown to be 
a direct antagonist of MDM2 activity and acts by specifi cally 
deubiquitylating p53 after stimulation by DNA damage, thus 
protecting p53 from MDM2-mediated degradation [202]. 
However, HAUSP was also shown to bind and to deubiquity-
late MDM2 and MDMX, thus stabilizing both proteins 
[203,204]. This effect appears to be more dominant, as 
knockdown or knockout of HAUSP activates p53 function 
[203]. In contrast to HAUSP, another deubiquitylation enzyme 
called USP2a has recently been shown to specifi cally bind to 
and deubiquitylate MDM2, but not p53, thus enhancing 
MDM2-mediated p53 degradation. Consistently, reduction of 
USP2a levels destabilizes MDM2 and causes the accumula-
tion and activation of p53 [205]. These studies suggest that 
deubiquitylation also regulates the MDM2-p53 feedback 
loop. Whether these deubiquitylases play a role in tumorigen-
esis would be an interesting and critical question for future 
investigation.

The above-discussed and other p53 regulators not dis-
cussed are listed in Table 48.1, highlighting the extreme com-
plexity of p53 regulation in cells.

TABLE 48.1
Upstream Regulators of p53
Protein Type of Molecule Role References

(A) Enzymatic activators

E4F1 Atypical ubiquitin ligase Ubiqutylation [224]

p300/CBP Acetyltransferase Acetylation [171,179,225]

PCAF Acetyltransferase Acetylation [102,226,227]

PML/p300 Tumor suppressor/acetyltransferase 
complex

Transcription [228]

Set7/9 Lysine methyltransferase Methylation [269]

NQO1 NADH oxidioreductase 20S proteasome associated factor [230]

Pin 1 Prolyl isomerase Phosphorylation alteration/enhancement [231,232]

p38 Ser/Thr kinase Phosphorylation [233–235]

ATM/ATR Ser/Thr kinases Phosphorylation [4,236]

CK1 Ser/Thr kinase Phosphorylation [134,237]

Chk ½ Ser/Thr kinases Phosphorylation [238]

(continued)

8768_C048.indd   10238768_C048.indd   1023 4/23/2008   10:01:52 AM4/23/2008   10:01:52 AM



1024 Gene and Cell Therapy: Therapeutic Mechanisms and Strategies

48.6  STRATEGIES FOR TARGETING p53 
IN CANCER THERAPY

The understanding of p53’s biological function and its regula-
tion provides a basis for targeting p53 for anticancer drug 
development. Over the past decade, a number of attempts have 
been made to develop drugs that either rescue p53’s activity 
by overexpressing its wild-type form in cancers, or enhance 
p53’s activity by interfering with the MDM2–p53 interaction 
or MDM2’s ubiquitin ligase activity (Table 48.2).

Some of the approaches currently explored to activate or 
rescue the wild-type function of p53 are the small molecules cp-
31398, PRIMA-1, and MIRA-1, and the recombinant adenoviral 

p53, known as Gendicine. CP-31398, PRIMA-1, and MIRA-1 
were developed as chaper one molecules to aid in refolding of 
mutant p53 in cancer tissue so that it can assume a proper wild-
type conformation. CP-31398 had the disadvantage in that it 
could only chaper one the newly translated p53 protein. 
However, recent tests with PRIMA-1 and MIRA-1 are very 
promising and demonstrate that these compounds can not only 
chaper one the folding of the newly produced p53 but also 
refold the mutant p53 already present in the cells [206–208]. 
The description of Gendicine, a recombinant adenovirus 
encoding the human p53 tumor suppressor gene (rAd-p53), and 
its clinical studies are discussed by Dr. Zhaohui Peng and his 

TABLE 48.1 (continued)
Upstream Regulators of p53

Protein Type of Molecule Role References

DNAPK Ser/Thr kinase Phosphorylation [239,240]

ERK Ser/Thr kinase Phosphorylation [235,241,242]

MAPK Ser/Thr kinase Phosphorylation [242,243]

JNK Ser/Thr kinase Phosphorylation [244–246]

Daxx/Axin/HIPK2 Ser/Thr kinase complex Phosphorylation (UV response) [247]

FACT (SSRP1/SPT 16)/CK2 Ser/Thr kinase/cofactor complex Phosphorylation [248,249]

c-Abl Tyr kinase p53 binding and Phosphorylation of MDM2 [250,251]

(B) Enzymatic Repressors

HDAC Deacetylase Deacetylation [252–254]

Sir2α Deacetylase Deacetylation [255]

FBX011 NEDD ligase Neddylation [256]

Set8/PR-Set7 Lysine methyltransferase Methylation [257]

Smyd2 Lysine methyltransferase Methylation [258]

Pias (1, xβ, y) SUMO ligase Sumoylation [259,260]

Sumo 1 SUMO ligase Sumoylation [261]

ArfBP1 (HECTH9/MULE) Ubiquitin ligase Ubiquitylation [262]

Carps Ubiquitin ligase Ubiquitylation [263,264]

CHIP Ubiquitin ligase Ubiquitylation [263,265]

E6AP Ubiquitin ligase Ubiquitylation [266]

Mdm2 Ubiquitin ligase Ubiquitylation/Neddylation [98,107]

PIRH2 Ubiquitin ligase Ubiquitylation [267]

WWP1 Ubiquitin ligase Ubiquitylation [268,269]

Daxx/HAUSP/MDM2/MDMX Ubiquitin ligase complex Ubiquitylation [270]

LAMA/EC5S/VHL Ubiquitin ligase complex Ubiquitylation [271]

YY1/MDM2 Ubiquitin ligase complex Ubiquitylation [272,273]

Protein Type of Molecule Role p53’s Fate References

(C) Nonenzymatic Interactors

ASPP1/2 Binding protein Cell cycle/apoptosis Activation [16,274,275]

VHL Binding protein Hypoxia/tumor suppressor Activation [276]

Topors RING family zinc fi nger Protein Binding protein Activation [277]

WRN Helicase Binding protein Activation [152,278]

Ribosomal proteins (L5, L11, L23, S7) Ribosomal subunits Binding proteins to MDM2 Activation [83,153–158]

Sp1 Transcription factor Transcription Activation [279]

p14/p19Arf Tumor suppressor Cell Cycle/MDM2 inhibitor Activation [280,281]

iASPP Binding protein Cell cycle/apoptosis Inactivation [275,282]

Hsp 90 Chaper one Conformation Inactivation [283]

Jab-1 Shuttling factor Cell cycle Inactivation [284,285]

8768_C048.indd   10248768_C048.indd   1024 4/23/2008   10:01:52 AM4/23/2008   10:01:52 AM



p53 Tumor Suppressor Opens Gateways for Cancer Therapy 1025

colleagues in Chapter 49, and represents a paradigm for clinical 
application p53 as an anticancer agent.

Since aberrant overexpression of MDM2 occurs in subset 
of tumors with wild-type p53, it is also necessary to overcome 
MDM2’s inhibition of p53 by downregulating its expression, 
either by directly inhibiting its ubiquitin ligase activity or 
compromising its interaction with p53 to restore p53 function 
in some tumors. Over past years, several strategies that 
target MDM2 for inhibition have been explored: (1) Inhibition 
of MDM2 expression by antisense oligonucleotides has been 
shown to activate p53 in various wild-type p53-containing 
tumor cell lines and has antitumor activity in xenograft tumor 
models in nude mice [209–211]. These antisense oligonucleo-
tides synergistically enhance the antitumor effect of chemo-
therapeutics and radiation therapy [212–214]. Interestingly, 
the antisense MDM2 inhibitors also have antitumor activities 
in human cancers with p53 defi ciency, refl ecting their inhibi-
tory effect on p53-independent function of MDM2 [210,213].

As noted above, MDM2 is the central negative regulator 
of p53, acting as an ubiquitin ligase to target p53 for protea-
some-mediated degradation. Thus inhibition of MDM2’s E3 
ligase activity would stabilize p53 for activation. Recently, 
small molecule inhibitors have been identifi ed to possess such 
an inhibitory effect on MDM2. One of such compounds, 
named HLI98, inhibits MDM2-mediated p53 ubiquitylation 
and induces p53-dependent apoptosis in cancer cells [215]. 
The major drawback for this class of compounds is their low 
selectivity and potency. To screen more selective small mole-
cules for the desired specifi city would increase the feasibility 
of using them in cancer therapy.

Finally, a potential way to activate p53 is through inhibi-
tion of the MDM–p53 binding. MDM2 contains a well-defi ned, 
relatively deep hydrophobic pocket in its the N- terminus (resi-
dues 25–109) where the transactivational domain of p53 binds, 
thereby concealing p53 from interacting with the transcrip-
tional machinery [216]. The minimal MDM2-binding site on 
p53 was subsequently mapped to residues 18–26 [93,217,218]. 
This pocket is fi lled by three primary side chains (Phe 19, 

Trp 23, and Leu 26) from the helical region of the p53 peptide 
[216,217]. Therefore, it is possible to design small molecules to 
mimic p53’s binding to MDM2. A number of such molecules 
have been investigated, including chalcone derivatives, choloro-
fusin, nutlin, and RITA. Chalcone derivatives are present in 
many antioxidant-rich foods and are intermediates in the pro-
duction of fl avanoids. They were the fi rst inhibitors found of 
the MDM–p53 interaction, as was cholorofusin, a fungal 
metabolite [208, 219,220]. However, their activity and cell and 
animal models are currently unconfi rmed. The small molecule 
inhibitors nutlin and RITA are potent and selective MDM2 
antagonists, which bind to MDM2, blocking its suppression of 
p53 [221,222] in vitro and in vivo tumor models and are promi-
sing for future study [223].

In summary, p53 and the MDM2–p53 feedback loop are 
highly relevant to cancer formation and progression. Hence, 
using p53 as an anticancer gene therapy or targeting this 
loop for anticancer therapy presents a very promising 
approach. Other alternative strategies could be designed by 
either disrupting MDMX–p53 binding or screening com-
pounds that target the central domain of MDM2 or MDMX, 
thus inhibiting their ability to inactivate p53. Although we 
have a long path to march in order to develop strategies 
stemmed from these concepts for effective cancer treatment, 
such a triumphant day is within reach, given that tremen-
dous effort will continuingly be spent expanding upon the 
wealth of knowledge already established in this exciting and 
advancing arena.
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