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The transcriptional factor p53 activates the expression of a myriad of target genes involving a complicated signalling network,

resulting in various cellular outcomes, such as growth arrest, senescence, apoptosis, and metabolic changes, and leading to con-

sequent suppression of tumour growth and progression. Because of the profoundly adverse effect of p53 on growth and prolifer-

ation of cancer cells, several feedback mechanisms have been employed by the cells to constrain p53 activity. Two major

antagonists MDM2 and MDMX (the long forms) are transcriptionally induced by p53, but in return block p53 activity, forming a

negative feedback circuit and rendering chemoresistance of several cancer cells. However, they are not alone, as cancer cells

also employ other proteins encoded by p53 target genes to inhibit p53 activity at transcriptional, translational, and posttransla-

tional levels. This essay is thus composed to review a recent progress in understanding the mechanisms for how cancer cells

hijack the p53 autoregulation by these proteins for their growth advantage and to discuss the clinical implications of these auto-

regulatory loops.
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Introduction

The tumour suppressor p53 plays an essentially important

role in guarding genome and defeating tumour development

and progression. Since it was discovered in 1979, the TP53

gene had been regarded as an oncogene (Lane and Crawford,

1979; Linzer and Levine, 1979) till 1989 when wild-type p53 was

found to actually function as a tumour suppressor (Baker et al.,

1989; Finlay et al., 1989). The wild-type p53 executes its tumour

suppression functions mostly by transcriptionally activating a

myriad of target genes, which encode proteins responsible for

cell cycle arrest, DNA repair, senescence, apoptosis, autophagy,

ferroptosis, and metabolic changes, respectively (Riley et al.,

2008; Vousden and Ryan, 2009; Jiang et al., 2015). Also, p53

can exert transcription-independent activity to trigger mitochon-

drial outer membrane permeabilization and apoptosis (Chipuk

et al., 2004; Leu et al., 2004). Because of the detrimental effects

of p53 on cell proliferation and growth, higher eukaryotic verte-

brate organisms including humans have evolved an elegant

negative feedback autoregulation to control p53. This regulation

involves two oncoproteins called MDM2 (also called HDM2 for

its human analogue) and MDMX (also called MDM4).

MDM2 is a RING finger-containing protein, encoded by a p53

target gene that is often amplified or overexpressed in multiple

human cancers, and has been deemed to be the most important

repressor of p53, hence constituting a critical negative feedback

loop (Momand et al., 1992; Oliner et al., 1992; Wu et al., 1993).

MDM2 utilizes several mechanisms to inhibit p53 activity. First,

it possesses an intrinsic E3 ligase to mediate p53 polyubiquiti-

nation and proteasomal degradation (Haupt et al., 1997;

Kubbutat et al., 1997; Fuchs et al., 1998). Also, it targets p53

for monoubiquitination and nuclear export, thus preventing p53

from binding to its target promoters in the nucleus (Li et al.,

2003). Additionally, it inhibits p53 transcriptional activity by dir-

ectly associating with and concealing the transactivation (TA)

domain of p53 (Oliner et al., 1993). Lastly, MDM2 can suppress

TP53 mRNA translation by promoting RPL26 degradation and

dissociating the RPL26–p53 mRNA interaction (Ofir-Rosenfeld

et al., 2008). The central role of MDM2 in the inactivation of p53

is also demonstrated by mouse genetic studies, showing that

the early embryonic lethality caused by knocking out the Mdm2

gene is completely rescued by further deleting Tp53 (Jones

et al., 1995; Montes de Oca Luna et al., 1995). Thus, MDM2

serves as a prime feedback antagonist of p53, but it also often

works with its partner MDMX to inactivate p53.

MDMX, an MDM2 homologue without any apparent intrinsic

E3 ligase activity, has been found to repress p53 activity by

partnering with MDM2 (Shvarts et al., 1996; Wade et al., 2010).
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MDMX associates with MDM2 through their C-terminal RING

domains and boosts the E3 ligase activity of the latter towards

p53 (Tanimura et al., 1999; Badciong and Haas, 2002). Also,

MDMX can suppress p53 transcriptional activity by directly inter-

acting with the N-terminal TA domain of this transcriptional fac-

tor (Shvarts et al., 1996). Its essential role in suppressing p53

has also been demonstrated by animal studies, as the embry-

onic lethality of Mdmx-null mice can be rescued by further delet-

ing Tp53 as well (Parant et al., 2001; Finch et al., 2002). The

partnership between Mdm2 and Mdmx appears to be more

essential for animal embryogenesis, as genetic dissociation of

their binding causes a lethal phenotype that can be rescued by

deleting Tp53 (Huang et al., 2011; Pant et al., 2011). However,

conditional knockout studies have shown that Mdm2 and Mdmx

can play independent roles in organogenesis, as Mdmx is

important only for the inactivation of p53 in certain organs or

tissues, while Mdm2 is essential for p53 inactivation in all

organs and tissues in mice (Boesten et al., 2006; Grier et al.,

2006; Xiong et al., 2006, 2007; Maetens et al., 2007; Abbas

et al., 2010; Pant et al., 2013; Zhang et al., 2014b, c).

Altogether, these studies demonstrate that MDMX also plays a

crucial role in suppressing p53 activity either by working with

MDM2 or independently.

This MDM2–MDMX–p53 loop is critically important for normal

growing or somatic cells to monitor p53 level and activity, but it

is also subjected to multitude regulations at different levels in

response to various stressors or signals to provoke the anti-

tumour functions of p53, as briefed in the following section. The

field has witnessed a tremendous progress in understanding the

mechanisms for and the biological importance of the regulations

of this loop. This review focuses on the recent progress about

how cancer cells utilize this loop to inhibit p53 activity by

recruiting other oncoprotein helpers for their growth advantage,

while readers are referred to other review articles on the role of

MDM2 in organ formation, development, DNA repair, stem cell

regulation, metabolism, oncogenesis, and drug discovery in this

MDM2 special issue.

Regulations of the MDM2–p53 loop

Because p53 is tightly controlled by MDM2 and MDMX in nor-

mal cells, breaking up this control is necessary for the cells to

promptly turn on p53 and effectively utilize its remarkable anti-

oncogenic power to maintain their cancer cell-free environment.

Indeed, there are myriad ways to turn on p53 (Kruse and Gu,

2009). For example, the repairable DNA damage signalling can

trigger the ATM/ATR–Chk2/Chk1 kinase cascade that activates

p53 by phosphorylating MDM2 and MDMX and blocking their

feedback regulations on this protein, though this cascade can

directly activate p53 by phosphorylating this protein as well

(Shieh et al., 1997, 2000; Canman et al., 1998; Tibbetts et al.,

1999; Hirao et al., 2000; Chen et al., 2005; Jin et al., 2006;

Cheng et al., 2009; Wang et al., 2009). Also, oncogenic stress

can induce the expression of another tumour suppressor P14ARF,

which activates p53 by binding to MDM2 and inhibiting its E3

ligase activity directly (Stott et al., 1998; Zhang et al., 1998).

Interestingly, the molecular basis for ARF-induced p53 activation

is not completely evolutionary conserved, because P19Arf, the

mouse homologue of P14ARF, was shown to interact with both

MDM2 and p53 (Kamijo et al., 1998; Pomerantz et al., 1998;

Honda and Yasuda, 1999). Furthermore, disturbing ribosomal

biogenesis by different chemical agents or under different stress

conditions, such as hypoxia, metabolic, or genetic alterations,

leads to p53 activation by inducing the interactions of various

ribosomal proteins with MDM2, consequently suppressing the

activity of the latter towards p53 (Zhang and Lu, 2009; Zhou

et al., 2012, 2015). Cells hire these mechanisms, though not

complete, to deploy p53 for the ultimate purpose of maintain-

ing their balanced homeostasis and protecting themselves

from undergoing transformation and eventual tumorigenesis

whenever confronting stressful and potential cancer-causing

environments.

However, this MDM2–MDMX–p53 loop is often hijacked by

cancer cells for their growth benefits. For instance, several types

of cancers, such as sarcoma, melanoma, breast cancer, leukae-

mia, and lymphoma, express high levels of MDM2 and/or

MDMX that inactivate p53 and its downstream pathways with

much lower level of TP53 mutation (Reifenberger et al., 1993;

Wasylishen and Lozano, 2016). Also, several other oncogenic

proteins, such as TSG101 (Li et al., 2001), YY1 (Sui et al.,

2004), and Gankyrin (Higashitsuji et al., 2005), have previ-

ously been shown to boost MDM2-mediated p53 proteolysis

by either stabilizing MDM2 or facilitating MDM2–p53 inter-

action. More recently and interestingly, a number of proteins

encoded by p53-responsive target genes have been uncov-

ered to inactivate p53 by either directly binding to it or indir-

ectly through collaboration with MDM2 or MDMX, forming a

multilayer autoregulatory feedback network, as further

described in the following section.

Trapping p53 in the negative autoregulatory web

MDM2 was the first negative feedback regulator of p53 dis-

covered in early 1990 s (Momand et al., 1992; Oliner et al.,

1992, 1993; Wu et al., 1993; Haupt et al., 1997; Kubbutat et al.,

1997). Since then, a growing number of p53 target genes have

been identified that control p53 level and activity in a feedback

fashion as well, forming an autoregulatory feedback network

(Figure 1). As mentioned above, one critical partner of MDM2 is

MDMX. Interestingly, the expression of the long form of MDMX,

MDMX-L, can also be induced by p53 through an alternative pro-

moter within the first intron of the MDMX gene in a cell line-

dependent fashion (Li et al., 2010; Phillips et al., 2010). MDMX-L

was shown to work cooperatively with MDM2 to target p53 for

degradation (Phillips et al., 2010), although this observation

remains to be validated in vivo.

In addition to MDMX, there are several p53-responsive target

genes that encode proteins capable of promoting MDM2-

mediated ubiquitin-dependent p53 degradation, including leu-

kaemia inhibitory factor (LIF) (Hu et al., 2007; Yu et al., 2014),

xeroderma pigmentosum group C (XPC) (Adimoolam and Ford,

2002; Krzeszinski et al., 2014), and Cockayne syndrome B (CSB)
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(Latini et al., 2011). Interestingly, Lif was initially identified as a

p53 transcriptional target in the mouse uteri to maintain mater-

nal reproduction (Hu et al., 2007). But later on, it was found to

be able to upregulate MDM2 expression through activation of

the STAT3 signalling, resulting in increased p53 degradation (Yu

et al., 2014). XPC and CSB are encoded by genes that are often

mutated in the rare genetic diseases, xeroderma pigmentosum

and Cockayne syndrome, respectively (Troelstra et al., 1992;

Sands et al., 1995). The two proteins were independently found

to enhance MDM2-dependent p53 degradation by associating

with the MDM2/p53 complex (Adimoolam and Ford, 2002; Latini

et al., 2011; Krzeszinski et al., 2014).

Besides these MDM2 helpers, earlier studies revealed several

non-MDM2 RING finger E3 ubiquitin ligases that can also regu-

late p53 level and activity in a feedback manner, such as PIRH2

and COP1 (Leng et al., 2003; Dornan et al., 2004). They were

independently shown to bind to p53 and promote its ubiquitin-

mediated degradation without engaging MDM2. In addition to

regulating p53 stability, PIRH2 was shown to suppress p53 tran-

scriptional activity without needing its RING finger domain, but

by interfering with the DNA-binding capacity of p53 (Leng et al.,

2003). However, the intact RING finger domain appeared to be

required for COP1-mediated inactivation of p53 (Dornan et al.,

2004). Interestingly, since the interaction between COP1 and

p53 was only found in cancer cells, and the Cop1-deficient mice

did not show any increase in p53 level and activity (Migliorini

et al., 2011), the regulation of p53 by this E3 ligase might only

be utilized by cancer cells.

Several members of the tripartite motif (TRIM) family have

also been found to target p53 for ubiquitination and degrad-

ation via a feedback fashion. For instance, Trim24 was identified

as a p53-binding partner in mouse embryonic stem cells and

shown to promote p53 degradation in organisms from

Drosophila to human (Allton et al., 2009; Jain et al., 2014). Also,

TRIM32 was shown to drive oncogenic transformation and

tumorigenesis by prompting p53 protein turnover through a pro-

teasomal pathway (Liu et al., 2014). Interestingly, TRIM32 was

also found to be transcriptionally induced by and to promote

the degradation of TAp73, a p53 homologue, in the neural pro-

genitor cells (Gonzalez-Cano et al., 2013).

Another example is the wild-type p53-induced phosphatase 1

(WIP1) encoded by the p53 target gene PPM1D. Intriguingly,

WIP1 inactivates p53 through multiple posttranslational

mechanisms (Fiscella et al., 1997). First, WIP1 mediates depho-

sphorylation and subsequent inactivation of p38 MAPK, conse-

quently attenuating UV-induced p53 phosphorylation at Ser33

and Ser46 that are catalysed by active p38 MAPK (Takekawa

et al., 2000; Bulavin et al., 2002). Second, WIP1 directly con-

tacts p53 and dephosphorylates it at serine 15, which strikingly

compromises p53 transcriptional activity (Lu et al., 2005). At

last, WIP1 interacts with and dephosphorylates MDM2 at serine

395, and thus enhances MDM2 stability and accessibility for

p53, resulting in augmented p53 ubiquitination and degradation

(Lu et al., 2007). Through these different mechanisms, WIP1

controls p53 level and activity.

Making the already complex regulations of p53 more compli-

cated are the additional regulations of this tumour suppressor

at the transcriptional and translational levels by its other target

genes. One of these examples is the zinc-finger protein BLIMP1,

which was originally identified as a transcriptional repressor of

the β-IFN gene by specifically binding to the PRDI (positive regu-

latory domain I element) of its promoter (Keller and Maniatis,

1991), but later was found to inhibit p53 gene transcription by

directly associating with the p53 promoter region close to its

transcription start site (Yan et al., 2007). Another example is

RNPC1, an RNA-binding protein whose RNA is transcriptionally

induced by the p53 family (Zhang et al., 2011). RNPC1 associ-

ates with the 5’ and 3’ untranslated regions of p53 mRNA and

prevents cap-binding protein eIF4E from binding to it, thus

resulting in the inhibition of p53 protein synthesis. Consistent

Figure 1 The negative autoregulatory network of p53. As a transcriptional factor, the tumour suppressor p53 induces the expression of a

large number of genes, whereas some of these target genes inactivate p53, thus composing negative feedback regulatory loops. For

instance, the transcription repressor BLIMP1 regulates p53 at the transcriptional layer; the RNA-binding protein RNPC1 and LncRNA-RoR sup-

press p53 at the translational layer; and the others inhibit p53 through direct interaction and/or posttranslational modifications.
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with these results, depletion of Rnpc1 in mouse embryonic

fibroblasts elevated p53 expression, while hyper-expression of

RNPC1 in dog lymphomas led to the reduction of p53 expression

(Zhang et al., 2011). Recently, a long non-coding RNA gene was

also found to be involved in the autoregulation of p53, as

human lncRNA-RoR is transcriptionally induced by p53 to sup-

press the translation of p53 mRNA by directly binding to the het-

erogeneous nuclear ribonucleoprotein I (hnRNP I) (Zhang et al.,

2013). However, this is not the end of the list, as our latest find-

ing revealed nerve growth factor receptor (NGFR) as a new auto-

regulatory suppressor of p53 (Zhou et al., 2016).

NGFR, also known as p75NTR or CD271, was originally identi-

fied as a transmembrane pan-receptor for all mature neuro-

trophins, including nerve growth factor (NGF), brain-derived

neutrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotro-

phin 4/5 (NT-4/5) with low affinity, as well as their precursors,

pro-neurotrophins, with high affinity (Barker, 2004). Depending

on the type of normal or cancer cells, cell differentiation status,

(pro-)neurotrophin availability, co-receptor engagement, and

the intracellular adaptor molecules, NGFR has been shown to

play diverged and sometimes contradictory roles either as an

oncogenic protein or as a tumour suppressor (Barker, 2004;

Molloy et al., 2011), but these cancer-related roles are only

associated with its transmembrane receptor functions. No study

has ever paid attention to its possible nuclear functions. In a

recent attempt to identify novel p53 targets, we revealed the

gene encoding NGFR as a new p53-responsive target gene by

performing a microarray analysis of gene expression profiles in

both wild-type and p53-deficient HCT116 colon cancer cells

using the p53-inducing small molecule, Inauhzin (Liao et al.,

2012; Zhang et al., 2012). Biologically, depleting NGFR triggered

apoptosis and growth arrest of various cancer cells, such as

melanoma, neuroblastoma, lung, liver, and colon cancer, and

suppressed the growth of xenograft tumours derived from

human lung cancer cells, demonstrating that NGFR plays

an oncogenic role in these cancer cells (Zhou et al., 2016).

Remarkably, knockdown of NGFR induced p53 level and activity,

consequently activating its downstream pathway, such as upre-

gulating the expression of p53 target genes, p21, PUMA, BAX,

BTG2, and so on (Zhou et al., 2016). This result suggests that

NGFR might play a role in the suppression of p53 function.

Indeed, this is the case, as NGFR can suppress p53 activity via

two distinct mechanisms: (i) its N-terminal extracellular domain

interacts with the C-terminus of MDM2 in the nucleus, as con-

firmed by both confocal imaging and biochemical fractionation

(Zhou et al., 2016), and this interaction leads to the enhance-

ment of MDM2-mediated ubiquitination and degradation of p53;

(ii) NGFR via its extracellular N-terminal domain can also disable

the transcriptional activity of p53 independently of MDM2, by

directly binding to the central DNA-binding domain of p53 and

preventing the latter from binding to its target promoters (Zhou

et al., 2016). Our study not only demonstrates NGFR as another

negative feedback auto-regulator of p53, but also uncovers its

new ligand-independent nuclear function as an oncoprotein to

promote cancer cell proliferation and growth by inactivating

p53, though it possesses p53-independent oncogenic functions

as well (Molloy et al., 2011).

Taken together, these findings strongly demonstrate that

wild-type p53-harbouring cancer cells utilize various tricks to

inactivate p53 in response to p53-activating agents, including

those used for chemotherapy; but all of these tricks display one

similar feature—the negative feedback, i.e. to activate different

downstream target genes of p53, which encode proteins that

can either enhance MDM2-dependent p53 degradation or inhibit

p53 expression at transcriptional and translational levels and

disable p53 transcriptional activity independent of MDM2

(Figure 1). These cancer cells deploy these remarkable tactics

for their growth advantage, which might also account for their

drug resistance as further discussed below.

Negative p53 autoregulation responsible for chemoresistance

One obvious question is why p53 activates the expression of

so many target genes for its own hardship in cancer cells. This

should not be the initial motive of p53 as a tumour suppressor.

Instead, it is likely that cancer cells might take advantage of the

p53 autoregulatory feedbacks as described above for their sur-

vival through multiple rounds of chemotherapy. Several lines of

evidence support this speculation. Classical examples are

MDM2 and MDMX that have been shown as drug-resistant fac-

tors in several types of cancers as reviewed by others (Wade

et al., 2013; Khoo et al., 2014; Zhang et al., 2014a). Another

example is LIF, as ectopic LIF was found to significantly attenu-

ate cell apoptosis induced by Fluorouracil (5-FU), Etoposide, or

Adriamycin in several wild-type p53-containing, but not p53-

null, human colorectal cancer cell lines (Yu et al., 2014).

Conversely, knockdown of endogenous LIF made p53-positive

cells more sensitive to 5-FU treatment in both cell-based sur-

vival assays and xenograft tumour models. In line with these

results, LIF expression was significantly higher in human colo-

rectal tumours than in their adjacent non-tumour tissues, and

the high expression of LIF was significantly associated with poor

prognosis in cancer patients (Yu et al., 2014). Although the

TP53 mutation status needs to be determined in these tumour

samples, this study suggests that the high level of LIF plays a

possible role in the development of chemoresistance of colorec-

tal cancers to 5-FU treatment.

Aforementioned NGFR might also be responsible for chemore-

sistance. When NGFR was knocked down, p53-positive cancer

cells became more sensitive to chemotherapeutic agent

Cisplatin, as the IC50 of Cisplatin was reduced by 1.6- and 2.2-

fold in HCT116p53+/+ and H460 cells, respectively. However, less

or no effect was observed in HCT116p53−/− or p53-null H1299

cells in the same set of experiments (Zhou et al., 2016).

Interestingly, higher levels of NGFR were detected in tumours

with wild-type TP53, suggesting that tumour cells with wild-type

p53 utilize this negative regulator to inhibit p53 functions for

their better survival.

In addition to the two examples above, WIP1 and COP1 have

been implied to render chemotherapeutic resistance to tumour

cells as well. A recent study showed that treatment of breast
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cancer MCF7 cells that contain wild-type p53 and highly ampli-

fied PPM1D, the WIP1-encoding gene, with GSK2830371, a specific

inhibitor for WIP1, significantly sensitized the cells to genotoxic

drugs, including Doxorubicin and Etoposide, as determined by cell

proliferation and p53 pathway activation (Pechackova et al., 2016).

In addition, GSK2830371 was able to enhance the inhibitory effect

of Nutlin-3, a specific MDM2 inhibitor (Pechackova et al., 2016).

Consistent with this study, several other studies also reported that

inhibition of WIP1 by GSK2830371 could potentiate the anti-cancer

effect of Nutlin-3 in osteosarcoma, neuroblastoma (Esfandiari

et al., 2016), and colon carcinoma cells (Sriraman et al., 2016).

Furthermore, re-introduction of miR-214 into breast cancer

cells, which is often downregulated in breast cancer cells and

clinical breast cancer samples, could directly reduce COP1

expression, and consequently sensitized the cancer cells to

Doxorubicin treatment in a p53-dependent manner (Zhang

et al., 2016). These studies also support the idea that the

high expression of p53 negative feedback regulators in

response to chemotherapy might be a mechanism for those

cancer cells that harbour wild-type p53 to develop chemore-

sistance during this therapy.

In summary, when wild-type p53-sustaining tumour cells are

subjected to chemotherapy, they will employ some of those

aforementioned p53 target genes to destroy p53 functions in a

feedback fashion, and thus confer their resistance to the

chemotherapy.

Questions and prospects

As discussed above, the negative autoregulation of p53 by

the proteins encoded by its target genes represents a critical

mechanism that is often hijacked by tumour cells to restrain p53

activity in favour of their development, progression, and/or drug

resistance. However, to better translate this complex regulation

into its clinical significance, such as its correlation with the clin-

ical progression and chemoresistance of human cancers and its

potential as a target for cancer intervention in clinical settings,

there are still several important issues that need to be addressed.

First, it is necessary to establish mouse tumour model systems to

determine the biological roles of the aforementioned negative

feedback regulators of p53 in tumour progression and drug

resistance. By doing so, we will obtain pre-clinical evidence to

support the development of mechanism-driven strategies to sur-

mount the p53 feedback regulation-caused tumour progression

and drug resistance. Second, it would be of great interest to

determine whether the expression patterns of these genes, such

as amplification or overexpression, are highly associated with

the progression and drug resistance of a broad spectrum of

human cancers. This comprehensive analysis will provide inform-

ative data as to whether alterations of these genes are well corre-

lated with or responsible for tumorigenesis, progression, and

drug resistance. It is also important to determine whether the

expression of these p53 negative regulators is well correlated

with the wild-type status of TP53. This information would offer

molecular insight into the progression and/or the relapse post

therapy of human cancers that sustain wild-type p53. Finally,

once their clinical relevance is validated, these p53 negative reg-

ulators could serve as molecule targets for future development

of anti-cancer therapy for cancers that contain wild-type p53.

Cocktail treatment by combining the agent(s) that targets one or

more of these p53 protein suppressors with a p53-activating

agent, such as an MDM2 inhibitor, should certainly achieve a

better efficacy on human cancers that harbour wild-type p53.

Optimistically, the day to accomplish this goal would not be that

far away as long as we continue dissecting the complex autoregu-

latory web of p53 (Figure 1).
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