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PRINCIPLES OF DWI
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PROPERTIES OF DWI SEQUENCE
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ADC MAPPING

 The amount of diffusion 1s quantitatively defined using the apparent di
coefficient (ADC), apparent because factors including capillary perfus
temperature, magnetic sensitivity of the tissue, and motion all affect the actud
diffusion.

e The ADC s calculated by performing a mono-exponential fit to the relationship
between the measured signal intensity (in logarithmic scale) and the b-values
as follows:

ADC = In (S1/S0) / (b1-b0)
SO 1s signal intensity for bO, and Si 1s signal intensity for bi

 The slope of the line that describes this relationship for each voxel represents
the ADC. The calculated ADC values for all voxels are usually displayed as a
parametric map (automated on most clinical MR systems), and by drawing a
region of interest onto this map, the mean or median ADC value 1n the region
of interest that reflects water diffusivity can be recorded

e Low ADC values mean restricted diffusion (i.e. tissues which are highly
cellular), and high ADC values are seen in areas with relative free diffusion
(1.e. tissues with low cellularity). Performing DWI measurements by using two
or more b-values (tumor detection and characterization are possible based on
differences in water diffusivity by observing the relative attenuation of signal
intensity on images obtained at different b-values. As the b-value increases, a
structure of lower ADC loses signal faster than structures of higher ADC, and
tissue contrast increases.

* Additional b-values (greater than at least 2) can be considered when the primary
goal 1s to obtain an accurate ADC measurement (1.€., to assess tumor response
or liver fibrosis), because increasing the number of data points can reduce
error 1in the ADC estimation. However this increases the acquisition time.
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LIVER DWI UTILITY/ADVANTAGES

Diffusion weighted imaging (DWI) has demonstrated promise in application to
liver lesions particularly those related to tumor detection, characterization, and
response to treatment.
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PITFALLS/LIMITATIONS OF DWI
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DWI ARTIFACTS
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DWI ARTIFACTS (cont)

e Susceptibility artifacts can be seen as bright spots, spatial distortion or
signal drop out and are primarily caused by metal artifacts or magnetic field
inhomogeneity, the latter of which can be overcome by shimming techniques.
Susceptibility effects resulting from air in the stomach or colon may specifically
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Case 2: Hepatic Cyst
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Figure 2.1: T2W image shows a well-
defined homogeneous hyperintense cyst
(red arrow)

IW dynamic contrast
ows absence enhancement
the cyst (red arrow)

Figure 2.4: DWI (b-value of 500) shows
increased signal intensity of the cyst (red
arrow)
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Figure 1.6: ADC mapping shows mildly
hyperintense signal intensity within the
large lesion (red arrow). Note that the
smaller lesion demonstrates a large area
of restriction (yellow arrow)
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CASE 3: Carcinoid Tumor with Liver Metastasis
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Figure 3.2: TIW sequence shows
the lesion with hypointense signal
intensity (red arrow)

Figure 3.3: TIW dynamic contrast
sequence shows mild diffuse
enhancement of the lesion (red
arrow)

Figure3.1: T2wimages
hyperintense lesion in
right hepatic lobe (red
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Figure 3.4: Diffusi
sequence (b-value of
increased signal inte
lesion (red arrow)

Figure 3.5: ADC mapping show
fairly homogeneous signal
throughout the liver. No hypointense
or hyperintense signal intensity

Figure 3.6: Octreotide scan shows
a vague area of increased uptake in
the right hepatic lobe (red arrow),
corresponding to the enhancing
is seen in the expected location of lesion in the liver. Bilateral intense
the lesion (region enclosed by red activity posteriorly represent kidney
circle) uptake (yellow arrows)

CASE 4: Focal Nodular Hyperplasia
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Figure 4.2: TWI1 sequence shows
isointense signal intensity of the
mass (red arrow) with a hypointense
central scar (yellow arrow)

Figure 4.3: The mass shows avid
contrast enhancement on arterial
phase (red arrow) with the central
scar remains hypointense (yellow
arrow)

4.4: Hepatobiliary phase Figure 4.5: Diffuse imaging
homogeneous uptake of (b-value of 500) shows hypointense
t (red arrow) indicating signal intensity of the focal nodular
ce of functioning hepatocytes. hyperplasia (red arrow)

scar appears hypointense
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TAKE HOME POINTS

sion images should always be interpreted in conjunction with all available

nventional sequences including post-contrast imaging and clinical history.

WI has a higher sensitivity, specificity and PPV for small HCC 1n cirrhotic

liver than conventional contrast enhanced MRI

DWTI offers better lesion to liver contrast and background suppression of

signals arising from bile ducts and vessels

DWI sequences are acquired without I'V contrast reducing the risk the contrast

induced nephropathy and nephrogenic systemic sclerosis in patients with low

GFR’s.

e DWIis very sensitive to artifacts rendering the interpretation more difficult

e ADC values should not solely used to discriminate between solid benign and
malignant lesion, since there are considerable overlap

 Anincrease in ADC has been observed in responders to both systemic treatment
and local regional therapies (RF ablation and chemoembolization)
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