What Every Radiology Resident Should Know About Biostatistics

Theodore Brown, MA, MPH; Adam Fonseca, MD; Viet Vu, MD;
Millie Yu, BS; Jeremy Nguyen, MD; Scott Beech, MD Tulane University School of Medicine
Department of Radiology, 1430 Tulane Ave. \#8654, New Orleans, LA. 70112

Biostatistics in Medical Research
Important concents:
Variable: an alphabetic character which represents a number, calle
variable, which is either arbitrary, not fully specified, or unknown
variable, which is either arbitrary, not fully specified, or unknown
Discrete variables: variables which only take certain values and none in between. For example, the number of heart beats a patient has in one minute could be 80 or 81 , but it cannot be anything between those two numbers
Continuous variables: variables which can take any value. For example, a patient's
temperature could be $37^{\circ} \mathrm{C}$ or $38^{\circ} \mathrm{C}$ or any number between them such as $374^{\circ} \mathrm{C}$. temperature could be $37^{\circ} \mathrm{C}$ or $38^{\circ} \mathrm{C}$ or any number between them, such as $37.4^{\circ} \mathrm{C}$.
opulation: All members or cases of a group or category of scientific interest Sample: A subset of cases selected from a larger population to gain knowledge about that population

Types of Variables
Qualitative Variables:
values that are unordered (ex. Hair colors)
Categorical - variables with values that are unordered (ex. Hair colors)
Dichotomous variable $-A$ categorical variable with only two categorie Ordinal - variables with values that follow an order but have uneven intervals (ex
Education level) Education level)
uantitative Variables
Interval - vain
in F or C)
Ratio - variabes wh
Ratio - variables with a
(ex. temperature in K)
Screening Tests: No medical test is perfectly accurate. To determine how accurate a screening test is, we can use statistical measures of performe like sensitivity and specificity.

Sensitivity = True Positive Fraction = P(Positive Test | Has Disease)
Measures the proportion of positives that are correctly identified as such
Specificity $=$ True Negative Fraction $=$ P(Negative Test \mid No Disease)
ntified as such
False Negative Fraction = (1 - Sensitivity) $=$ P(Negative Test \mid Has Disease Percentage that tests negative but has the disease
False Positive Fraction $=(1-$ Specificity $)=P($ Positive Test \mid No Disease $)$

	Disease +	Disease -
Test +	++ True Positive	+- False Positive
Test -	-+ False Negative	- True Negative

Study Designs: Study designs are usually split into two types: observational and experimental. In an observational study, subjects are observed and variables are measured without assigning treatments to the subjects. In an experimental study, subjects are assigned to either a control or experimental group, reatments a
applied to the experimental group, and then the effects on the variables are measured.
Randomized controlled (clinical) trial - subjects are randomized to one of two (or Randomized controlled (clinical) trial - subjects are rando

ㅁ
口

Descriptive Statistics

Descriptive statistics is the collection and summarization of data, the basis of quantitative analysis. It allows for presenting quantitative descriptions in a manageable fo
comparison.

and dispersi

Frequency dist

Grouped frequency distribution: individual scores are grouped, and each group of scores are given an equal class interva
Grouped frequency distribution: individual scores are grouped, and each group of scores are given an equal
Relative frequency distribution: shows the percentage of all the elements that fall within each class interval

Distribution is best demonstrated as a graph or chart called a frequency distribution. Raw numbers or percentages can be used. The most common distribution is the normal (Gaussian) distribution which depends on the mean (μ) and standard deviation (σ). A normal distribution is symmetrical and ell-shaped but other types of distrinutions also exist. A positively skewed distribution (also called a nig shewed distribuion) and negatively skewe distribution (also called a left skewed distribution) can be seen below.

Sentral tendency is an estimate of the center of a distrib
Mean is the average of values = (sum of values/numbe
Median is the value at the exact middle of the set of values.
Mode is the most frequently occurring value within the se
a truly normal distribution (bell-shaped curv),
dispersion are range and standard deviation
Standard deviation is a more accurate and detailed estimation of dispersion which accounts for
outliers. While standard deviation is derived easily by computer, it is helpful to understand how it is
calculated. The equation for standard deviation of a sample is shown at the right.

Each difference between each value of the mean is calculated using subtraction. To eliminated negative Each to obtain the Sum of Squares (SS). The SS is divided by the total number of values minus one. This value is .

Inferential Statistics

Inferential statistics are used to apply statistical data obtained from a smaller sample size to a larger population. This is inference, or the use of
draw conclusions about a population. In doing so, it is important to ensure that the sample group being tested, as closely as reasonably possible, draw conclusions about a population. In doing so, it is important to ensure that the sample group being tested, as closely as reasonably possible,
represents the population to which one is trying to attribute the conclusions to. Invariably, different types of bias can be introduced when selecting a sample group. This is called sampling error, which is a natural, expected random variation that will cause the sample statistic to differ from the population parameter.

Central limit theorem: The central limit theorem forms the basis of inferential statistics. It states that:
The random sampling distribution of means will always to be normal, irrespective of the shape of the population distribution from which the samples were drawn.
The extent to which a sample differs from the population can be measured using the Standard Error the Mean (SE or SEM). $\quad \sigma_{M}=\frac{\sigma}{\sqrt{N}}$
Hypothesis testing
To derive statistical conclusions from medical research, one must first construct two mutually exclusive hypotheses, usually termed the null hypothesis $\left(H_{0}\right)$, which states that there
there is a difference/effect.

Reality
Null $\left(H_{0}\right)$ is true

Null $\left(H_{0}\right)$ is true
Null $\left(H_{0}\right)$ is false

Null $\left(\mathrm{H}_{\mathrm{o}}\right)$ not rejected
Correct conclusion
Type 2 error

Null $\left(\mathrm{H}_{\mathrm{O}}\right)$ rejected
Typen $\mathbf{~ e r r o r ~}$
Correct conclusion
Type I Error α
gain, when in fact there is not. This is also known as the significance level of a A type I error or α, is the odds of saying there is a relationship, difference, gain, when $\begin{aligned} & \text { est. In terms of false positives and false negatives, this would equate to a false positive. Along with this concept, and universally seen in research, medica }\end{aligned}$ or otherwise, is the p-value, which is the probability of making a Type I error based on the data obtained. This is typically set to <0.05, which means that there is a less than chance that the data obtained is invalid, or to have occurred simply due to chance.
Type II Error β
The odds of saz
The odds of sa,
halse negative.
false negativ
power $1-\beta$
The odds of saying that there is a relationship, difference, gain, when in fact there is one In other words, the odds of confirming the alternative
hypothesis/theory correctly. If the sample size increases (i.e. more data points), the power of the test/experiment increases.

Correlation

Correlation describes the relationship between two variables. The degree to which
these two variables are related is called the correlation coefficient. The direction of hese two variables are related is called the correlation coefficient. The direction of his coefficient can be either positive or negative. In a positive correlation, the values
of two variables, X and Y, move in the same direction. In a negative correlation, they move in opposite directions. If there is no correlation, then there is no discernable pattern.
\qquad

ANOVA

ANOVA stands for "analysis of variance" which is a group of statistical models used to determine if any differences seen are statistically significant. To use an ANOVA it is to determine if any differences seen are statistically significant. To use an ANOVA, it is
necessary to have a categorical (or nominall independent variable that has at least necessary to have a categorical (or nominal) idependent variable that has at least
two independent groups or categories and a continuous (interval or ratio) dependent
variable.

References

L. M. Sullivan (2012). Es Bartlett Publishers, Inc.

J. H. Zar (2009). Biostataistí
J. H. Zar (2009). Biostatistical Analysis, ${ }^{\text {th }}$ or $5^{\text {th }}$ Edition. Prentice Hall
B. G. Tabachnich and L. S . Fidell (2001). Using Multivariate Statistics, $4^{\text {th }}$ Edition.

