Chiung-Kuei Huang, Ph.D.

Assistant Professor

School of Medicine
Chiung-Kuei Huang

Education & Affiliations

2001 B.Sc., Biology, National Sun Yat-Sen University, Taiwan
2004 M.Sc., Biotechnology, National Sun Yat-Sen University, Taiwan
2011 Ph.D., Pathobiology (Molecular Cancer Biology), University of Rochester, Rochester, NY
2013 Post. Doc., Molecular Cardiology, University of Rochester, Rochester, NY
2015 Post. Doc., Molecular Hepatology, Warren Alpert Medical School of Brown University, RI

Biography

Appointment and Position

2012-2013 - Postdoctoral Fellow, Department of Pathology, University of Rochester Medical Center, George H. Whipple Laboratory for Cancer Research

2013-2015 - Post-doctoral Research Associate, Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI

2015-2020 - Assistant research professor, Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI

2020-2021 - Research assistant Professor, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN

2021-present - Assistant professor (Tenure-Track), Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA

Research

Project 1: TET1 in alcoholic liver disease progression.

Chronic alcohol abuse has been linked to abnormal epigenetic modifications that affect the progression of alcoholic liver disease (ALD) by influencing factors in controlling cell death in hepatocytes. One such factor is 5-hydroxymethylcytosine (5hmC), but there is currently little information as to how chronic alcohol consumption affects 5hmC's regulation of cell death. Understanding how alcohol impacts 5hmC formation and consequently cell death pathways will potentially yield therapeutic approaches towards ALD. In our preliminary studies, we found that 5hmC expression is down-regulated in the livers of rats and mice fed with an ethanol diet as well as in human ALD tissues. We further examined the expression levels of enzymes involved in the generation of 5hmC, which include methylcytosine dioxygenase TET1, TET2, and TET3 in ALD samples. It was found that TET1 is significantly down-regulated in human and rodent ALD samples. We determined that using shRNA-TET1 to knockdown TET1 in human hepatocytes significantly suppressed 5hmC formation and promoted cell death as well as the pro-apoptotic gene, HRK. Intriguingly, the treatment of the DNA methylation inhibitor, 5-Azacytidine, could replace the impact of TET1 knockdown on hepatocyte cell death, further suggesting the importance of DNA methylation in TET1-mediated hepatocyte cell death. We then analyzed how TET1 down-regulation is involved in ALD progression by using TET1 knockout mice. It was found that knockout of TET1 substantially elicited liver fibrosis, which is consequently the outcome of wound-healing in chronic liver damage. Thus, our central hypothesis is that ethanol exposure increases hepatocyte cell death to promote ALD progression by suppressing TET1-mediated 5hmC epigenetic changes. Our long-term objective is to clarify the underlying mechanisms by which TET1 modulates ALD progression, and determine if TET1 is a potential therapeutic target in ALD. In this project, we propose two specific aims to evaluate our hypothesis. In aim 1, we will examine how TET1 modulates cell death pathways in ALD progression. We will investigate the enzymatic function of TET1 in regulating cell death pathways by using TET1 catalytic domain, full length TET1, TET1 catalytic domain dead mutation, and TET1 specific inhibitor. In aim 2, we will examine the role of TET1 in ALD progression. We will evaluate the impact of TET1 down-regulation on hepatocyte cell death in wild-type (WT) and TET1 knockout (KO) mice challenged with an alcoholic liquid diet. To further determine the hepatic specific TET1 role in ALD progression, we will generate liver specific TET1 knockout mice by using albumin promoter driven Cre mouse and floxed TET1 mouse. The results will significantly advance our knowledge of the mechanisms by which TET1 modulates hepatocyte cell death and improve our understanding of pathophysiological mechanisms underlying ALD progression. We also anticipate that it will have a broad impact on the understanding of TET1 expression and its relationship to hepatocyte function in general.

Project 2: Aspartate beta-hydroxylase in cholangiocarcinoma tumorigenesis. 

The central focus of this proposal is to understand the role of aspartate beta-hydroxylase (ASPH) in tumorigenesis of cholangiocarcinoma (CCA) and investigate the therapeutic potential of targeting ASPH in preclinical CCA models. The long-term goal of this proposal is to investigate potential targeting approaches for CCA patients. The overall survival of CCA patients with distant metastasis is about 7% and most patients with CCA tumors have no effective therapies. Thus, there is a need to develop an effective therapy for those patients with this deadly disease. We have found that ASPH, which is a 2-oxoglutarate dependent enzyme, is highly expressed in CCA tumors but barely detectable in normal bile ducts. Our pilot studies demonstrated its oncogenic characteristics in CCA progression. Furthermore, we revealed a novel mechanistic link YAP1/ASPH/Notch1/Pin1/RB1 signaling cascade in cholangiocarcinogenesis. More importantly, we show that the YAP1 inhibitor-Verteporfin (VER) substantially suppressed ASPH expression and CCA malignancy. Based on these findings, we hypothesize that the ASPH/RB1 signaling cascade mediated by YAP1 contributes to the early tumorigenesis and late malignant tumor progression of CCA. Three specific aims are proposed to determine the role of ASPH in CCA tumorigenesis. In aim 1, we will determine the effects of ASPH manipulation on CCA tumorigenesis by using different CCA models in vitro and in vivo. Aim 2 will investigate the mechanisms by which ASPH modulates CCA progression via multiple molecular approaches including RNA sequencing. In aim 3, we will repurpose the therapeutic potential of VER in CCA malignancy by using multiple CCA models, including patient-derived xenograft models. 
 

Publications

 

  1. Pham L, Baiocchi L, Kennedy L, Sato K, Meadows V, Meng F, Huang CK, Kundu D, Zhou T, Chen L, Alpini G, Francis H. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. J Pineal Res. 2021 Mar;70(2):e12699. doi: 10.1111/jpi.12699. Epub 2020 Nov 29. PMID: 33020940 Review.
     
  2. Bai X, Zhang H, Zhou Y, Nagaoka K, Ji C, Cao K, Mulla J, Cheng Z, Mueller W, Bay A, Hildebrand G, Lu S, Wallace J, Wands JR, Sun B#, Huang CK. TET1 promotes malignant progression of cholangiocarcinoma with IDH1 wild-type. Hepatology. 2021 May;73(5):1747-1763. doi: 10.1002/hep.31486. PMID: 32740973
     
  3. Nagaoka* K, Ji C*, Ogawa* K (*Co-firast author), Cao KY, Bai X, Mulla J, Cheng Z, Wands JR, Huang CK. Targeting Aspartate Beta-Hydroxylase with the Small Molecule Inhibitor MO-I-1182 Suppresses Cholangiocarcinoma Metastasis. Dig Dis Sci. 2021 Apr;66(4):1080-1089. doi: 10.1007/s10620-020-06330-2. Epub 2020 May 22. PMID: 32445050
     
  4. Nagaoka K,Mulla J, Cao K, Cheng Z, Mueller W, Bay A, Hildebrand G, Lu S, Wands JR, Huang CK. Alpha-ketoglutarate inhibits non-alcoholic liver disease progression by targeting lipid metabolism. Liver Research. https://doi.org/10.1016/j.livres.2020.04.001, June 2020, Pages 94-100.
     
  5. Jiang G*, Huang CK* (*Co-firast author), Zhang X, Lv X, Wang Y, Yu T, Cai X. Wnt signaling in liver disease: emerging trends from a bibliometric perspective. PeerJ. 2019;7:e7073. Epub 2019/07/06. doi: 10.7717/peerj.7073. PubMed PMID: 31275745; PMCID: PMC6590390.
     
  6. Ji C*, Nagaoka K*, Zou J* (*Co-firast author), Casulli S, Lu S, Cao KY, Zhang H, Iwagami Y, Carlson RI, Brooks K, Lawrence J, Mueller W, Wands JR, Huang CK. Chronic ethanol-mediated hepatocyte apoptosis links to decreased TET1 and 5-hydroxymethylcytosine formation. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2019;33(2):1824-35. Epub 2018/09/07. doi: 10.1096/fj.201800736R. PubMed PMID: 30188753; PMCID: PMC6338639.
     
  7. Iwagami Y*, Zou J* (*Co-firast author), Zhang H, Cao K, Ji C, Kim M, Huang CK. Alcohol-mediated miR-34a modulates hepatocyte growth and apoptosis. J Cell Mol Med. 2018. Epub 2018/06/07. doi: 10.1111/jcmm.13681. PubMed PMID: 29873178; PMCID: PMC6050481.
     
  8. Zhao CL, Hui Y, Wang LJ, Yang D, Yakirevich E, Mangray S, Huang CK#, Lu S# (#Co-corresponding author). Alanine-glyoxylate aminotransferase 1 (AGXT1) is a novel marker for hepatocellular carcinomas. Human pathology. 2018;80:76-81. Epub 2018/06/09. doi: 10.1016/j.humpath.2018.05.025. PubMed PMID: 29883780.
     
  9. Huang CK*, Iwagami Y*, Zou J* (*Co-firast author), Casulli S, Lu S, Nagaoka K, Ji C, Ogawa K, Cao KY, Gao JS, Carlson RI, Wands JR. Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer letters. 2018;429:1-10. Epub 2018/05/08. doi: 10.1016/j.canlet.2018.04.041. PubMed PMID: 29733964; PMCID: PMC5985220.
     
  10. Shen J*, Huang CK* (*Co-firast author), Yu H, Shen B, Zhang Y, Liang Y, Li Z, Feng X, Zhao J, Duan L, Cai X. The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma. J Cell Mol Med. 2017;21(5):986-92. Epub 2017/02/23. doi: 10.1111/jcmm.12950. PubMed PMID: 28224705; PMCID: PMC5387156.
     
  11. Zhao CL, Hui Y, Wang LJ, Lombardo K, Yang D, Mangray S, Yakirevich E, Amin A, Huang CK#, Lu S# (#Co-corresponding author). T-complex-associated-testis-expressed 3 (TCTE3) is a novel marker for pancreatobiliary carcinomas. Human pathology. 2017;70:62-9. Epub 2017/10/29. doi: 10.1016/j.humpath.2017.10.010. PubMed PMID: 29079176; PMCID: PMC5757622.
     
  12. Iwagami Y*, Huang CK* (*Co-firast author), Olsen MJ, Thomas JM, Jang G, Kim M, Lin Q, Carlson RI, Wagner CE, Dong X, Wands JR. Aspartate beta-hydroxylase modulates cellular senescence through glycogen synthase kinase 3beta in hepatocellular carcinoma. Hepatology. 2016;63(4):1213-26. Epub 2015/12/20. doi: 10.1002/hep.28411. PubMed PMID: 26683595; PMCID: PMC4805474
     
  13. Huang CK*, Aihara A*, Iwagami Y* (*Co-first author), Yu T, Carlson R, Koga H, Kim M, Zou J, Casulli S, Wands JR. Expression of transforming growth factor beta1 promotes cholangiocarcinoma development and progression. Cancer letters. 2016;380(1):153-62. Epub 2016/07/02. doi: 10.1016/j.canlet.2016.05.038. PubMed PMID: 27364974; PMCID: PMC4973469.
     
  14. Huang CK*, Iwagami Y*, Aihara A* (*Co-first author), Chung W, de la Monte S, Thomas JM, Olsen M, Carlson R, Yu T, Dong X, Wands J. Anti-Tumor Effects of Second Generation beta-Hydroxylase Inhibitors on Cholangiocarcinoma Development and Progression. PloS one. 2016;11(3):e0150336. Epub 2016/03/10. doi: 10.1371/journal.pone.0150336. PubMed PMID: 26954680; PMCID: PMC4783022.
     
  15. Huang CK, Lee SO, Chang E, Pang H, Chang C. Androgen receptor (AR) in cardiovascular diseases. J Endocrinol. 2016;229(1):R1-R16. Epub 2016/01/16. doi: 10.1530/JOE-15-0518. PubMed PMID: 26769913; PMCID: PMC4932893.
     
  16. Huang CK, Yu T, de la Monte SM, Wands JR, Derdak Z, Kim M. Restoration of Wnt/beta-catenin signaling attenuates alcoholic liver disease progression in a rat model. Journal of hepatology. 2015;63(1):191-8. Epub 2015/03/01. doi: 10.1016/j.jhep.2015.02.030. PubMed PMID: 25724365; PMCID: PMC4475483.
     
  17. Dong X, Lin Q, Aihara A, Li Y, Huang CK, Chung W, Tang Q, Chen X, Carlson R, Nadolny C, Gabriel G, Olsen M, Wands JR. Aspartate beta-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6(2):1231-48. Epub 2014/12/09. doi: 10.18632/oncotarget.2840. PubMed PMID: 25483102; PMCID: PMC4359229.
     
  18. Xu CQ, de la Monte SM, Tong M, Huang CK, Kim M. Chronic Ethanol-Induced Impairment of Wnt/beta-Catenin Signaling is Attenuated by PPAR-delta Agonist. Alcoholism, clinical and experimental research. 2015;39(6):969-79. Epub 2015/04/24. doi: 10.1111/acer.12727. PubMed PMID: 25903395; PMCID: PMC4452420
     
  19. Huang CK*, Luo J*, Lai KP* (*Co-first author), Wang R, Pang H, Chang E, Yan C, Sparks J, Lee SO, Cho J, Chang C. Androgen receptor promotes abdominal aortic aneurysm development via modulating inflammatory interleukin-1alpha and transforming growth factor-beta1 expression. Hypertension. 2015;66(4):881-91. Epub 2015/09/02. doi: 10.1161/HYPERTENSIONAHA.115.05654. PubMed PMID: 26324502; PMCID: PMC4658219.
     
  20. Izumi K, Mizokami A, Lin HP, Ho HM, Iwamoto H, Maolake A, Natsagdorj A, Kitagawa Y, Kadono Y, Miyamoto H, Huang CK, Namiki M, Lin WJ. Serum chemokine (CC motif) ligand 2 level as a diagnostic, predictive, and prognostic biomarker for prostate cancer. Oncotarget. 2016;7(7):8389-98. Epub 2015/12/25. doi: 10.18632/oncotarget.6690. PubMed PMID: 26701731; PMCID: PMC4885000.
     
  21. Soh SF, Huang CK, Lee SO, Xu D, Yeh S, Li J, Yong EL, Gong Y, Chang C. Determination of androgen receptor degradation enhancer ASC-J9((R)) in mouse sera and organs with liquid chromatography tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2014;88:117-22. Epub 2013/09/18. doi: 10.1016/j.jpba.2013.08.020. PubMed PMID: 24042123; PMCID: PMC3856572.
     
  22. Huang CK*, Pang H*(*Co-first author), Wang L, Niu Y, Luo J, Chang E, Sparks JD, Lee SO, Chang C. New therapy via targeting androgen receptor in monocytes/macrophages to battle atherosclerosis. Hypertension. 2014;63(6):1345-53. Epub 2014/04/02. doi: 10.1161/HYPERTENSIONAHA.113.02804. PubMed PMID: 24688120; PMCID: PMC4080890.
     
  23. Izumi K, Lin WJ, Miyamoto H, Huang CK, Maolake A, Kitagawa Y, Kadono Y, Konaka H, Mizokami A, Namiki M. Outcomes and predictive factors of prostate cancer patients with extremely high prostate-specific antigen level. J Cancer Res Clin Oncol. 2014;140(8):1413-9. Epub 2014/04/22. doi: 10.1007/s00432-014-1681-8. PubMed PMID: 24747988
     
  24. Liang L*, Li L* (*Co-first author), Tian J, Lee SO, Dang Q, Huang CK, Yeh S, Erturk E, Bushinsky D, Chang LS, He D, Chang C. Androgen receptor enhances kidney stone-CaOx crystal formation via modulation of oxalate biosynthesis & oxidative stress. Mol Endocrinol. 2014;28(8):1291-303. Epub 2014/06/24. doi: 10.1210/me.2014-1047. PubMed PMID: 24956378; PMCID: PMC4116591
     
  25. Huang CK*, Luo J* (*Co-first author), Lee SO, Chang C. Concise review: androgen receptor differential roles in stem/progenitor cells including prostate, embryonic, stromal, and hematopoietic lineages. Stem Cells. 2014;32(9):2299-308. Epub 2014/04/18. doi: 10.1002/stem.1722. PubMed PMID: 24740898.
     
  26. Aihara A, Huang CK, Olsen MJ, Lin Q, Chung W, Tang Q, Dong X, Wands JR. A cell-surface beta-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma. Hepatology. 2014;60(4):1302-13. Epub 2014/06/24. doi: 10.1002/hep.27275. PubMed PMID: 24954865; PMCID: PMC4176525.
     
  27. Huang CK*, Lee SO* (* Co-first author), Lai KP, Ma WL, Lin TH, Tsai MY, Luo J, Chang C. Targeting androgen receptor in bone marrow mesenchymal stem cells leads to better transplantation therapy efficacy in liver cirrhosis. Hepatology. 2013;57(4):1550-63. Epub 2012/11/15. doi: 10.1002/hep.26135. PubMed PMID: 23150236 (F1000Prime recommended article)
     
  28. Lai KP*, Huang CK*, Chang YJ* (* Co-first author), Chung CY, Yamashita S, Li L, Lee SO, Yeh S, Chang C. New therapeutic approach to suppress castration-resistant prostate cancer using ASC-J9 via targeting androgen receptor in selective prostate cells. The American journal of pathology. 2013;182(2):460-73. Epub 2012/12/12. doi: 10.1016/j.ajpath.2012.10.029. PubMed PMID: 23219429; PMCID: PMC3562731.
     
  29. Huang CK, Tsai MY, Luo J, Kang HY, Lee SO#, Chang C# (#Co-corresponding author). Suppression of androgen receptor enhances the self-renewal of mesenchymal stem cells through elevated expression of EGFR. Biochimica et biophysica acta Molecular cell research .2013;1833(5):1222-34. Epub 2013/01/22. doi: 10.1016/j.bbamcr.2013.01.007. PubMed PMID: 23333872; PMCID: PMC3673551.
     
  30. Yang DR, Ding XF, Luo J, Shan YX, Wang R, Lin SJ, Li G, Huang CK, Zhu J, Chen Y, Lee SO, Chang C. Increased chemosensitivity via targeting testicular nuclear receptor 4 (TR4)-Oct4-interleukin 1 receptor antagonist (IL1Ra) axis in prostate cancer CD133+ stem/progenitor cells to battle prostate cancer. The Journal of biological chemistry. 2013;288(23):16476-83. Epub 2013/04/24. doi: 10.1074/jbc.M112.448142. PubMed PMID: 23609451; PMCID: PMC3675583.
     
  31. Huang CK, Lai KP, Luo J, Tsai MY, Kang HY, Chen Y, Lee SO#, Chang C# (#Co-corresponding author). Loss of androgen receptor promotes adipogenesis but suppresses osteogenesis in bone marrow stromal cells. Stem cell research. 2013;11(2):938-50. Epub 2013/07/19. doi: 10.1016/j.scr.2013.06.001. PubMed PMID: 23859805; PMCID: PMC3748723.
     
  32. Luo J*, Ok Lee S* (*Co-first author), Liang L, Huang CK, Li L, Wen S, Chang C. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene. 2014;33(21):2768-78. Epub 2013/06/25. doi: 10.1038/onc.2013.233. PubMed PMID: 23792449
     
  33. Lai KP, Huang CK, Fang LY, Izumi K, Lo CW, Wood R, Kindblom J, Yeh S, Chang C. Targeting stromal androgen receptor suppresses prolactin-driven benign prostatic hyperplasia (BPH). Mol Endocrinol. 2013;27(10):1617-31. Epub 2013/07/31. doi: 10.1210/me.2013-1207. PubMed PMID: 23893956; PMCID: PMC3787128.
     
  34. Li CF, Wang JM, Kang HY, Huang CK, Wang JW, Fang FM, Wang YH, Wu WR, Li SH, Yu SC, Lee JC, Lan J, Shiue YL, Wu LC, Huang HY. Characterization of gene amplification-driven SKP2 overexpression in myxofibrosarcoma: potential implications in tumor progression and therapeutics. Clinical cancer research: an official journal of the American Association for Cancer Research. 2012;18(6):1598-610. Epub 2012/02/11. doi: 10.1158/1078-0432.CCR-11-3077. PubMed PMID: 22322669.
     
  35. Lee SO*, Tian J*, Huang CK* (*Co-first author), Ma Z, Lai KP, Hsiao H, Jiang M, Yeh S, Chang C. Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. J Endocrinol. 2012;213(2):173-82. Epub 2012/03/07. doi: 10.1530/JOE-11-0474. PubMed PMID: 22393245.
     
  36. Ma WL, Hsu CL, Yeh CC, Wu MH, Huang CK, Jeng LB, Hung YC, Lin TY, Yeh S, Chang C. Hepatic androgen receptor suppresses hepatocellular carcinoma metastasis through modulation of cell migration and anoikis. Hepatology. 2012;56(1):176-85. Epub 2012/02/10. doi: 10.1002/hep.25644. PubMed PMID: 22318717; PMCID: PMC3673306.
     
  37. Lai KP, Yamashita S, Huang CK, Yeh S, Chang C. Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of pro-inflammatory cytokines/chemokines. EMBO Mol Med. 2012;4(8):791-807. Epub 2012/06/30. doi: 10.1002/emmm.201101140. PubMed PMID: 22745041; PMCID: PMC3494077.
     
  38. Lee SO, Ma Z, Yeh CR, Luo J, Lin TH, Lai KP, Yamashita S, Liang L, Tian J, Li L, Jiang Q, Huang CK, Niu Y, Yeh S, Chang C. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor vs. non-stem/progenitor cells. Journal of molecular cell biology. 2013;5(1):14-26. Epub 2012/07/27. doi: 10.1093/jmcb/mjs042. PubMed PMID: 22831834; PMCID: PMC3570051.
     
  39. Tian J, Lee SO, Liang L, Luo J, Huang CK, Li L, Niu Y, Chang C. Targeting the unique methylation pattern of androgen receptor (AR) promoter in prostate stem/progenitor cells with 5-aza-2'-deoxycytidine (5-AZA) leads to suppressed prostate tumorigenesis. The Journal of biological chemistry. 2012;287(47):39954-66. Epub 2012/09/27. doi: 10.1074/jbc.M112.395574. PubMed PMID: 23012352; PMCID: PMC3501037.
     
  40. Huang HY, Huang WW, Wu JM, Huang CK, Wang JW, Eng HL, Lin CN, Chou SC, Yu SC, Fang FM, Lee JC, Li CF. Flow cytometric analysis of DNA ploidy and S-phase fraction in primary localized myxofibrosarcoma: correlations with clinicopathological factors, Skp2 expression, and patient survival. Annals of surgical oncology. 2008;15(8):2239-49. Epub 2008/06/03. doi: 10.1245/s10434-008-9968-0. PubMed PMID: 18516647.
     
  41. Kang HY, Shyr CR, Huang CK, Tsai MY, Orimo H, Lin PC, Chang C, Huang KE. Altered TNSALP expression and phosphate regulation contribute to reduced mineralization in mice lacking androgen receptor. Molecular and cellular biology. 2008;28(24):7354-67. Epub 2008/10/08. doi: 10.1128/MCB.00582-08. PubMed PMID: 18838539; PMCID: PMC2593437.
     
  42. Chang CY, Hsuuw YD, Huang FJ, Shyr CR, Chang SY, Huang CK, Kang HY, Huang KE. Androgenic and antiandrogenic effects and expression of androgen receptor in mouse embryonic stem cells. Fertil Steril. 2006;85 Suppl 1:1195-203. Epub 2006/04/18. doi: 10.1016/j.fertnstert.2005.11.031. PubMed PMID: 16616092.
     
  43. Huang CK, Chang BS, Wang KC, Her SJ, Chen TW, Chen YA, Cho CL, Liao LJ, Huang KL, Chen WS, Liu ZH. Changes in polyamine pattern are involved in floral initiation and development in Polianthes tuberosa. J Plant Physiol. 2004;161(6):709-13. Epub 2004/07/23. doi: 10.1078/0176-1617-01256. PubMed PMID: 15266718.
     
  44. Huang CK, Chen WS, Chen YA.  Can. J. Plant Sci. 2004; 84: 881-883 “Daylength affects both free and conjugated indole-3-acetic acid levels in leaves and flowering in Doritis pulcherrima (orchid)”. Can. J. Plant Sci. 2004; 84: 881-883,